Reduced light absorption of black carbon (BC) and its influence on BC-boundary-layer interactions during “APEC Blue”

Author:

Gao MengORCID,Yang YangORCID,Liao Hong,Zhu Bin,Zhang Yuxuan,Liu Zirui,Lu XiaoORCID,Wang Chen,Zhou QimingORCID,Wang Yuesi,Zhang Qiang,Carmichael Gregory R.,Hu Jianlin

Abstract

Abstract. Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. Although the changes in BC concentrations in response to emission reduction measures have been well documented, the influence of emission reductions on the light absorption properties of BC and its influence on BC-boundary-layer interactions has been less explored. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asia-Pacific Economic Cooperation (APEC) summit affect the mixing state and light absorption of BC, and the associated implications for BC-PBL interactions. We found that both the mass concentration of BC and the BC coating materials declined during the APEC week, which reduced the light absorption and light absorption enhancement (Eab) of BC. The reduced absorption aerosol optical depth (AAOD) during APEC was caused by both the decline in the mass concentration of BC itself (52.0 %), and the lensing effect of BC (48.0 %). The reduction in coating materials (39.4 %) contributed the most to the influence of the lensing effect, and the reduced light absorption capability (Eab) contributed 3.2 % to the total reduction in AAOD. Reduced light absorption of BC due to emission control during APEC enhanced planetary boundary layer height (PBLH) by 8.2 m. PM2.5 and O3 were found to have different responses to the changes in the light absorption of BC. Reduced light absorption of BC due to emission reductions decreased near-surface PM2.5 concentrations but near-surface O3 concentrations were enhanced in the North China Plain. These results suggest that current measures to control SO2, NOx, etc. would be effective in reducing the absorption enhancement of BC and in inhibiting the feedback of BC on the boundary layer. However, enhanced ground O3 might be a side effect of current emission control strategies. How to control emissions to offset this side effect of current emission control measures on O3 should be an area of further focus.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Ministry of Science and Technology of the People's Republic of China

Natural Science Foundation of Guangdong Province

State Key Joint Laboratory of Environmental Simulation and Pollution Control

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3