An improved cirrus detection algorithm MeCiDA2 for SEVIRI and its validation with MODIS
Author:
Ewald F.,Bugliaro L.,Mannstein H.,Mayer B.
Abstract
Abstract. The influence of cirrus clouds on the radiation budget of the Earth depends on their optical properties and their global coverage. The monitoring of cirrus coverage with instruments aboard geostationary satellites enables the investigation of cirrus clouds at the global scale as well as the identification of their diurnal variation. For instance, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) satellites provides data with high temporal resolution of 15 min and a spatial resolution of 3 km × 3 km at the sub-satellite point. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the sun-synchronous platforms Terra and Aqua delivers at least one observation per day with a high spatial resolutions ranging from 250 m × 250 m to 1 km × 1 km. Since the infrared channels of the SEVIRI instrument are suitable for an observation which is independent from day-light, Krebs et al. (2007) developed a cirrus detection algorithm for SEVIRI (called MeCiDA), based solely on its thermal channels. Since MeCiDA was optimised for the area of Europe only, we present an improved version of the algorithm which allows application to the full Meteosat disc. Required changes include the consideration of the viewing angle dependency and of the sensitivity of the 9.7 μm channel to the ozone column. To this end, a correction is implemented that minimises the influence of the variability of the stratospheric ozone. The validation of the proposed improvements is carried out by using MeCiDA applied to MODIS data to address viewing angle-dependent cirrus detection and by additionally comparing it to the Cloud Optical Properties MOD06 cirrus product. The new MeCiDA version detects less cirrus than the original one for latitudes larger than 40° but almost the same amount elsewhere. MeCiDA's version for MODIS is more sensitive than that for SEVIRI with cirrus occurrences higher by 10%, and the new MeCiDA provides almost the same cirrus coverage (±0.1) as given by the Cloud Phase Optical Properties from MODIS for latitudes smaller than 50°. Finally, the influence of sub-pixel clouds on the SEVIRI cirrus detection has been examined: more than 60% of the undetected SEVIRI cirrus pixels have a cirrus coverage smaller than 0.5.
Publisher
Copernicus GmbH
Reference31 articles.
1. Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998. 2. Appleman, H.: The formation of exhaust contrails by jet aircraft, B. Am. Meteorol. Soc., 34, 14–20, 1953. 3. Atlas, D., Wang, Z., and Duda, D.: Contrails to cirrus – morphology, microphysics, and radiative properties, J. Appl. Meteorol. Clim., 45, 5–19, 2006. 4. Aumann, H. H., Chahine, M., Gautier, C., Goldberg, M., Kalnay, E., McMillan, L., Revercomb, H., Rosenkranz, P., Smith, W., Staelin, D., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003. 5. Baum, B., Soulen, P., Strabala, K., King, M., Ackerman, S., Menzel, W., and Yang, P.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781–11792, 2000.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|