Tree-ring reconstruction of seasonal mean minimum temperature at Mt. Yaoshan, China, since 1873 and its relevance to 20th-century warming

Author:

Liu Y.,Zhang Y.,Song H.,Ma Y.,Cai Q.ORCID,Wang Y.

Abstract

Abstract. It is very important to comprehend the climate variations in the vast regions of Central Plains of China. Current knowledge about climate changes of the past few hundred years in this region is primarily based on historical documents, and lack of evidences from the natural archives. However, these documents had somewhat artificially effects caused by the recorders, and not sufficient to fully understand natural climatic changes. In this paper, based on a significant correlation between the tree-ring width of Chinese Pine and observed instrumental data in the Mt. Yaoshan, China, we formulated a transfer function to reconstruct the mean minimum temperature (MMinT) from the previous December to the current June (Tmin_DJ) for the period 1873–2011. The reconstruction explained 39.8% of the instrumental variance during the calibration period of 1958–2011. High Tmin_DJ intervals with values greater than the 139 year average occurred in 1932–1965 and 1976–2006. The intervals 1878–1894 and 1906–1931 experienced a Tmin_DJ lower than the 139 year average. The ten highest Tmin_DJ years occurred after the 1950s, especially after 1996. A distinct upward trend in the Tmin_DJ series beginning in the 1910s was apparent, and the highest value occurred around 2000. The 20th-century warming signal was captured well by the Yaoshan Tmin_DJ temperature reconstruction, indicating that the temperature rise in the sensitive Central Plains of China region reflected the global temperature change. The Tmin_DJ reconstruction also matched several other temperature series in China with similar warm-cold patterns. The distinct spatial correlation between both observed and reconstructed series and CRU TS3.10 grid data indicates that our results may represent Tmin_DJ changes on a larger scale. The spatial correlation with sea surface temperature (SST) indicated that observed and reconstructed Tmin_DJ temperatures in the Mt. Yaoshan are closely linked to the West Pacific, Indian and North Atlantic Oceans as well as El Niño-Southern Oscillation (ENSO).

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3