Author:
Harris J. C.,Grilli S. T.
Abstract
Abstract. Wave-induced boundary layer (BL) flows over sandy rippled bottoms are studied using a numerical model that applies a one-way coupling of a "far-field" inviscid flow model to a "near-field" large eddy simulation (LES) Navier–Stokes (NS) model. The incident inviscid velocity and pressure fields force the LES, in which near-field, wave-induced, turbulent bottom BL flows are simulated. A sediment suspension and transport model is embedded within the coupled flow model. The numerical implementation of the various models has been reported elsewhere, where we showed that the LES was able to accurately simulate both mean flow and turbulent statistics for oscillatory BL flows over a flat, rough bed. Here we show that the model accurately predicts the mean velocity fields and suspended sediment concentration for oscillatory flows over full-scale vortex ripples. Tests show that surface roughness has a significant effect on the results. Beyond increasing our insight into wave-induced oscillatory bottom BL physics, sophisticated coupled models of sediment transport such as that presented have the potential to make quantitative predictions of sediment transport and erosion/accretion around partly buried objects in the bottom, which is important for a vast array of bottom deployed instrumentation and other practical ocean engineering problems.
Reference84 articles.
1. Alessandrini, B.: Thèse d'Habilitation en Vue de Diriger les Recherches, Ph.D. thesis, Ecole Centrale de Nantes, Nantes, France, 2007.
2. Bagnold, R. A.: Motion of wave in shallow water, interaction between waves and sand bottoms, P. Roy. Soc. Lond. A, 187, 1–18, 1946.
3. Benjamin, T. B.: Shearing flow over a wavy boundary, J. Fluid Mech., 5, 161–205, 1959.
4. Blondeaux, P.: Sand ripples under sea waves, Part 1. ripple formation, J. Fluid Mech., 218, 1–17, 1990.
5. Blondeaux, P., Scandura, P., and Vittori, G.: Coherent structures in an oscillatory separated flow: numerical experiments, J. Fluid Mech., 518, 215–229, 2004.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献