Abstract
Abstract. A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically-based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal averages provides a global view of tropospheric ozone trends, which appear to be surprisingly modest over the last four decades.
Reference66 articles.
1. Attmannspacher, A. and Dütsch, H. U.: International ozone sonde intercomparison at the Observatory Hohenpeissenberg, Ber. Dtsch. Wetterdienstes, 120, 1–85, 1970.
2. Attmannspacher, A. and Dütsch, H. U.: Second international ozone sonde intercomparison at the Observatory Hohenpeissenberg, Ber. Dtsch.Wetterdienstes, 157, 1–64, 1980.
3. Barnes, R. A., Bandy, A. R., and Torres, A. L.: Electrochemical concentration cell ozonesonde accuracy and precision, J. Geophys. Res., 90, 7881–7887, https://doi.org/10.1029/JD090iD05p07881, 1985.
4. Bhartia, P. K.: MI Algorithm Theoretical Basis Document: Volume II, OMI Ozone Products, ATBD-OMI-02, Version 2.0, August 2002.
5. Chatfield, R. and Harrison, H.: Tropospheric ozone: 1. Evidence for higher background values, {J. Geophys. Res.}, {82}, 5965–5968, https://doi.org/10.1029/JC082i037p05965, 1977.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献