Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries
Author:
Bartels-Rausch T.ORCID, Wren S. N., Schreiber S., Riche F., Schneebeli M.ORCID, Ammann M.ORCID
Abstract
Abstract. Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analyzed by means of X-ray computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature dependent air–ice partitioning coefficients, better described the observed diffusion profiles than the use of air–liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
Publisher
Copernicus GmbH
Reference63 articles.
1. Abbatt, J. P. D., Bartels-Rausch, T., Ullerstam, M., and Ye, T. J.: Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature, Environ. Res. Lett., 3, 045008, https://doi.org/10.1088/1748-9326/3/4/045008, 2008. 2. Baker, M. and Dash, J. G.: Comment on: surface layers on ice by CA Knight, J. Geophys. Res., 101, 12929–12936, https://doi.org/10.1029/96JD00555, 1996. 3. Barret, M., Domine, F., Houdier, S., Gallet, J.-C., Weibring, P., Walega, J., Fried, A., and Richter, D.: Formaldehyde in the Alaskan Arctic snowpack: partitioning and physical processes involved in air-snow exchanges, J. Geophys. Res., 116, D00R03, https://doi.org/10.1029/2011JD016038, 2011a. 4. Barret, M., Houdier, S., and Domine, F.: Thermodynamics of the formaldehyde – water and formaldehyde – ice systems for atmospheric applications, J. Phys. Chem. A, 115, 307–317, https://doi.org/10.1021/jp108907u, 2011b. 5. Bartels, T., Eichler, B., Zimmermann, P., Gäggeler, H. W., and Ammann, M.: The adsorption of nitrogen oxides on crystalline ice, Atmos. Chem. Phys., 2, 235–247, https://doi.org/10.5194/acp-2-235-2002, 2002.% SELFREFERENCE
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|