Raman Lidar for Meteorological Observations, RALMO – Part 2: Validation of water vapor measurements
-
Published:2013-05-22
Issue:5
Volume:6
Page:1347-1358
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Brocard E., Philipona R.ORCID, Haefele A.ORCID, Romanens G., Mueller A., Ruffieux D., Simeonov V., Calpini B.
Abstract
Abstract. The Raman Lidar for Meteorological Observations (RALMO) was installed at the MeteoSwiss Regional Center of Payerne, Switzerland, in summer 2008. One of its aims is to provide continuous vertical profiles of tropospheric water vapor during day and night at a high temporal resolution. Twelve months (October 2009–September 2010) of lidar data are analyzed. During this period of time, the lidar produced 9086 profiles, representing 52.6% of the time (this figure reached 63.2% for the first 6 months of 2011). Under cloud-free conditions, half of the profiles reached more than 8610 m above ground level at night, and 4050 m during the day. In order to validate the capabilities of the instrument, the year of lidar data was compared to the collocated radiosondes. On average, lidar water vapor mixing ratio was found to be within 5 to 10% of radiosonde values up to 8 km at night, and within 3% up to 3 km during the day. Relative humidity results show an agreement within 2 and 5% for day and night, respectively. An integrated water vapor comparison also shows a good correlation with both radiosondes and GPS measurements: the lidar had a 4.2% dry bias compared to radiosondes and a 5.3% wet bias compared to GPS. These results validate the performance of the lidar and the humidity profiles with a 30 min time resolution.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference31 articles.
1. Apituley, A., Wilson, K., Potma, C., Volten, H., and de Graaf, M.: Performance assessment and application of CAELI – A high-performance Raman lidar for diurnal profiling of Water Vapour, Aerosols and Clouds, in: Proceedings of the 8th International Symposium on Tropospheric Profiling, edited by: Apituley, A., Russchenberg, H. W. J., and Monna, W. A. A., Delft, The Netherlands, October 2009, 2009. 2. Bleisch, R., Kämpfer, N., and Haefele, A.: Retrieval of tropospheric water vapour by using spectra of a 22 GHz radiometer, Atmos. Meas. Tech., 4, 1891–1903, https://doi.org/10.5194/amt-4-1891-2011, 2011. 3. de Haan, S., Holleman, I., and Holtslag, A. A. M.: Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications, J. Appl. Meteorol. Clim., 48, 1302–1316, https://doi.org/10.1175/2008JAMC2024.1, 2008. 4. Dinoev, T.: Automated Raman lidar for day and night operational observation of tropospheric water vapor for meteorological applications, Ph.D. Thesis, Federal Institute of Technology EPFL, Lausanne, Switzerland, 2009. 5. Dinoev, T. S., Simeonov, V. B., Arshinov, Y. F., Bobrovnikov, S. M., Ristori, P., Calpini, B., Parlange, M. B., and van den Bergh, H.: Raman Lidar for Meteorological Observations, RALMO – Part I: Instrument description, Atmos. Meas. Tech. Discuss., 5, 6867–6914, https://doi.org/10.5194/amtd-5-6867-2012, 2012.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|