Event controls on intermittent streamflow in a temperate climate

Author:

Kaplan Nils HinrichORCID,Blume TheresaORCID,Weiler MarkusORCID

Abstract

Abstract. Intermittent streams represent a substantial part of the total stream network, and their occurrence is expected to increase due to climate change. Thus, it is of high relevance to provide detailed information on the temporal and spatial controls of streamflow intermittency to support management decisions. This study presents an event-based analysis of streamflow responses in intermittent streams in a mesoscale catchment with a temperate climate. Based on the streamflow responses, precipitation events were classified into flow or no-flow classes. Response controls like precipitation, soil moisture, and temperature were used as predictors in a random forest model to identify the temporally changing factors that explain streamflow intermittency at the event scale. Soil moisture was the most important predictor, but the predictor importance varied with the geology in the catchment. Streamflow responses in the slate geology were controlled by soil moisture in the shallow and deep soil layers, while streamflow in the marl geology was primarily controlled by soil moisture in the upper soil layer. Streamflow responses in catchments underlain by both marl and sandstone were dependent on soil moisture, whereas streamflow in the only catchment with a pure sandstone geology depended on precipitation characteristics. In all slate and marl catchments, streamflow intermittency also varied with soil temperature, which is probably a proxy for seasonal changes in evapotranspiration and an indicator of freezing conditions. Our findings underline the importance of using high temporal resolution data and tailored event definitions that account for the fast changes between flow/no flow in intermittent streams to identify streamflow controls at the event scale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3