Applying non-parametric Bayesian networks to estimate maximum daily river discharge: potential and challenges

Author:

Ragno ElisaORCID,Hrachowitz MarkusORCID,Morales-Nápoles OswaldoORCID

Abstract

Abstract. Non-parametric Bayesian networks (NPBNs) are graphical tools for statistical inference widely used for reliability analysis and risk assessment and present several advantages, such as the embedded uncertainty quantification and limited computational time for the inference process. However, their implementation in hydrological studies is still scarce. Hence, to increase our understanding of their applicability and extend their use in hydrology, we explore the potential of NPBNs to reproduce catchment-scale hydrological dynamics. Long-term data from 240 river catchments with contrasting climates across the United States from the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) data set will be used as actual means to test the utility of NPBNs as descriptive models and to evaluate them as predictive models for maximum daily river discharge in any given month. We analyse the performance of three networks, one unsaturated (hereafter UN-1), one saturated (hereafter SN-1), both defined only by hydro-meteorological variables and their bivariate correlations, and one saturated network (hereafter SN-C), consisting of the SN-1 network and including physical catchments' attributes. The results indicate that the UN-1 network is suitable for catchments with a positive dependence between precipitation and discharge, while the SN-1 network can also reproduce discharge in catchments with negative dependence. The latter can reproduce statistical characteristics of discharge (tested via the Kolmogorov–Smirnov statistic) and have a Nash–Sutcliffe efficiency (NSE) ≥0.5 in ∼40 % of the catchments analysed, receiving precipitation mainly in winter and located in energy-limited regions at low to moderate elevation. Further, the SN-C network, based on similarity of the catchments, can reproduce discharge statistics in ∼10 % of the catchments analysed. We show that once a NPBN is defined, it is straightforward to infer discharge and to extend the network itself with additional variables, i.e. going from the SN-1 network to the SN-C network. However, the results also suggest considerable challenges in defining a suitable NPBN, particularly for predictions in ungauged basins. These are mainly due to the discrepancies in the timescale of the different physical processes generating discharge, the presence of a “memory” in the system, and the Gaussian-copula assumption used for modelling multivariate dependence.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3