Abstract
Abstract. The potential benefits of seasonal streamflow forecasts for the hydropower sector have been evaluated for several basins across the world but with contrasting conclusions on the expected benefits. This raises the prospect of a complex relationship between reservoir characteristics, forecast skill, and value. Here, we unfold the nature of this relationship by studying time series of simulated power production for 735 headwater dams worldwide. The time series are generated by running a detailed dam model over the period 1958–2000 with three operating schemes: basic control rules, perfect forecast-informed operations, and realistic forecast-informed operations. The realistic forecasts are issued by tailored statistical prediction models – based on lagged global and local hydroclimatic variables – predicting seasonal monthly dam inflows. As expected, results show that most dams (94 %) could benefit from perfect forecasts. Yet, the benefits for each dam vary greatly and are primarily controlled by the time-to-fill value and the ratio between reservoir depth and hydraulic head. When realistic forecasts are adopted, 25 % of dams demonstrate improvements with respect to basic control rules. In this case, the likelihood of observing improvements is controlled not only by design specifications but also by forecast skill. We conclude our analysis by identifying two groups of dams of particular interest: dams that fall in regions expressing strong forecast accuracy and having the potential to reap benefits from forecast-informed operations and dams with a strong potential to benefit from forecast-informed operations but falling in regions lacking forecast accuracy. Overall, these results represent a first qualitative step toward informing site-specific hydropower studies.
Funder
Ministry of Education - Singapore
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献