Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations
-
Published:2024-04-08
Issue:7
Volume:24
Page:4177-4192
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Tao Chenliang, Peng Yanbo, Zhang Qingzhu, Zhang YuqiangORCID, Gong BingORCID, Wang Qiao, Wang Wenxing
Abstract
Abstract. Narrowing surface ozone disparities between urban and nonurban areas escalate health risks in densely populated urban zones. A comprehensive understanding of the impact of ozone photochemistry on this transition remains constrained by current knowledge of aerosol effects and the availability of surface monitoring. Here we reconstructed spatiotemporal gapless air quality concentrations using a novel transformer deep learning (DL) framework capable of perceiving spatiotemporal dynamics to analyze ozone urban–nonurban differences. Subsequently, the photochemical effect on these discrepancies was analyzed by elucidating shifts in ozone regimes inferred from an interpretable machine learning method. The evaluations of the model exhibited an average out-of-sample cross-validation coefficient of determination of 0.96, 0.92, and 0.95 for ozone, nitrogen dioxide, and fine particulate matter (PM2.5), respectively. The ozone sensitivity in nonurban areas, dominated by a nitrogen-oxide-limited (NOx-limited) regime, was observed to shift towards increased sensitivity to volatile organic compounds (VOCs) when extended to urban areas. A third “aerosol-inhibited” regime was identified in the Jiaodong Peninsula, where the uptake of hydroperoxyl radicals onto aerosols suppressed ozone production under low NOx levels during summertime. The reduction of PM2.5 could increase the sensitivity of ozone to VOCs, necessitating more stringent VOC emission abatement for urban ozone mitigation. In 2020, urban ozone levels in Shandong surpassed those in nonurban areas, primarily due to a more pronounced decrease in the latter resulting from stronger aerosol suppression effects and less reduction in PM2.5. This case study demonstrates the critical need for advanced spatially resolved models and interpretable analysis in tackling ozone pollution challenges.
Funder
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China Taishan Scholar Foundation of Shandong Province
Publisher
Copernicus GmbH
Reference77 articles.
1. Action Plan on Air Pollution Prevention and Control (in Chinese): http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (last access: 1 February 2023), 2023. 2. Bertasius, G., Wang, H., and Torresani, L.: Is Space-Time Attention All You Need for Video Understanding?, arXiv [preprint], https://doi.org/10.48550/arXiv.2102.05095, 9 June 2021. 3. Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, 785–794, https://doi.org/10/gdp84q, 2016. 4. Chu, W., Li, H., Ji, Y., Zhang, X., Xue, L., Gao, J., and An, C.: Research on ozone formation sensitivity based on observational methods: Development history, methodology, and application and prospects in China, J. Environ. Sci., 138, 543–560, https://doi.org/10/gr4qzk, 2023. 5. Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., and McLinden, C. A.: Global fine-scale changes in ambient NO2 during COVID-19 lockdowns, Nature, 601, 380–387, https://doi.org/10.1038/s41586-021-04229-0, 2022.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|