Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050

Author:

Sarangi ChandanORCID,Qian Yun,Leung L. RubyORCID,Zhang Yang,Zou YufeiORCID,Wang YuhangORCID

Abstract

Abstract. Anthropogenic contribution to the overall fine particulate matter (PM2.5) concentrations has been declining sharply in North America. In contrast, a steep rise in wildfire-induced air pollution events with recent warming is evident in the region. Here, based on coupled fire–climate–ecosystem model simulations, summertime wildfire-induced PM2.5 concentrations are projected to nearly double in North America by the mid-21st century compared to the present. More strikingly, the projected enhancement in fire-induced PM2.5 (∼ 1–2 µg m−3) and its contribution (∼ 15 %–20 %) to the total PM2.5 are distinctively significant in the eastern US. This can be attributed to downwind transport of smoke from future enhancement of wildfires in North America to the eastern US and associated positive climatic feedback on PM2.5, i.e., perturbations in circulation, atmospheric stability, and precipitation. Therefore, the anticipated reductions in PM2.5 from regulatory controls on anthropogenic emissions could be significantly compromised in the future in the densely populated eastern US.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3