Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants

Author:

Vepsäläinen SampoORCID,Calderón Silvia M.ORCID,Prisle Nønne L.ORCID

Abstract

Abstract. Surfactants have been a focus of investigation in atmospheric sciences for decades due to their ability to modify the water uptake and cloud formation potential of aerosols. Surfactants adsorb at the surface and can decrease the surface tension of aqueous solutions. In microscopic aqueous droplets with finite amounts of solute, surface adsorption may simultaneously deplete the droplet bulk of the surfactant. While this mechanism is now broadly accepted, the representation in atmospheric and cloud droplet models is still not well constrained. We compare the predictions of five bulk–surface partitioning models documented in the literature to represent aerosol surface activity in Köhler calculations of cloud droplet activation. The models are applied to common aerosol systems, consisting of strong atmospheric surfactants (sodium myristate or myristic acid) and sodium chloride in a wide range of relative mixing ratios. For the same particles, the partitioning models predict similar critical droplet properties at small surfactant mass fractions, but differences between the model predictions increase significantly with the surfactant mass fraction in the particles. Furthermore, significantly different surface tensions are predicted for growing droplets at given ambient conditions along the Köhler curves. The inter-model variation for these strong surfactant particles is different than previously observed for moderately surface active atmospheric aerosol components. Our results highlight the importance of establishing bulk–surface partitioning effects in Köhler calculations for a wide range of conditions and aerosol types relevant to the atmosphere. In particular, conclusions made for a single type of surface active aerosol and surface activity model may not be immediately generalized.

Funder

H2020 European Research Council

Academy of Finland

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3