Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds

Author:

Chatziparaschos Marios,Daskalakis NikosORCID,Myriokefalitakis SteliosORCID,Kalivitis NikosORCID,Nenes AthanasiosORCID,Gonçalves Ageitos MaríaORCID,Costa-Surós MontserratORCID,Pérez García-Pando CarlosORCID,Zanoli Medea,Vrekoussis MihalisORCID,Kanakidou MariaORCID

Abstract

Abstract. Ice-nucleating particles (INPs) enable ice formation, profoundly affecting the microphysical and radiative properties, lifetimes, and precipitation rates of clouds. Mineral dust emitted from arid regions, particularly potassium-containing feldspar (K-feldspar), has been shown to be a very effective INP through immersion freezing in mixed-phase clouds. However, despite the fact that quartz has a significantly lower ice nucleation activity, it is more abundant than K-feldspar in atmospheric desert dust and therefore may be a significant source of INPs. In this contribution, we test this hypothesis by investigating the global and regional importance of quartz as a contributor to INPs in the atmosphere relative to K-feldspar. We have extended a global 3-D chemistry transport model (TM4-ECPL) to predict INP concentrations from both K-feldspar and quartz mineral dust particles with state-of-the-art parameterizations using the ice-active surface-site approach for immersion freezing. Our results show that, although K-feldspar remains the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds, the contribution of quartz can also be significant. Quartz dominates the lowest and the highest altitudes of dust-derived INPs, affecting mainly low-level and high-level mixed-phase clouds. The consideration of quartz INPs also improves the comparison between simulations and observations at low temperatures. Our simulated INP concentrations predict ∼ 51 % of the observations gathered from different campaigns within 1 order of magnitude and ∼ 69 % within 1.5 orders of magnitude, despite the omission of other potentially important INP aerosol precursors like marine bioaerosols. Our findings support the inclusion of quartz in addition to K-feldspar as an INP in climate models and highlight the need for further constraining their abundance in arid soil surfaces along with their abundance, size distribution, and mixing state in the emitted dust atmospheric particles.

Funder

European Regional Development Fund

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3