Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic

Author:

Wang ZimingORCID,Bugliaro LucaORCID,Jurkat-Witschas Tina,Heller Romy,Burkhardt UlrikeORCID,Ziereis HelmutORCID,Dekoutsidis GeorgiosORCID,Wirth MartinORCID,Groß SilkeORCID,Kirschler SimonORCID,Kaufmann StefanORCID,Voigt ChristianeORCID

Abstract

Abstract. Contrail cirrus constitute the largest radiative forcing (RF) component to the total aviation effect on climate. However, the microphysical properties and radiative effects of contrail cirrus and natural cirrus clouds in the same meteorological conditions are still not completely resolved. Motivated by these uncertainties, we investigate an extended cirrus region perturbed by aviation in the North Atlantic region (NAR) on 26 March 2014 during the Midlatitude Cirrus (ML-CIRRUS) experiment. On that day, high air traffic density in the NAR combined with large scale cold and humid ambient conditions favored the formation of a contrail cirrus outbreak situation. In addition, low coverage by low-level water clouds and the homogeneous oceanic albedo increased the sensitivity for retrieving cirrus properties and their radiative effect from satellite remote sensing. This allowed us to extend the current knowledge on contrail cirrus by combining airborne in situ, lidar and satellite observations. In the synoptic context of a ridge cirrus, an extended thin ice cloud with many persistent contrails and contrail cirrus has been observed for many hours with the geostationary Meteosat Second Generation (MSG)/Spinning Enhanced Visible and InfraRed Imager (SEVIRI) from the early morning hours until dissipation after noon. Airborne lidar observations aboard the German High Altitude and LOng Range Research Aircraft (HALO) suggest that this cirrus has a significant anthropogenic contribution from aviation. A new method based on in situ measurements was used to distinguish between contrails, contrail cirrus and natural cirrus based on ice number and gas phase NO concentrations. Results show that contrail effective radii (Reff) reach at most 11 µm, while contrail cirrus Reff can be as large as 51 µm. Contrail and contrail cirrus mean Reff is 18 % smaller than that of natural cirrus. We find that a difference in Reff between contrail cirrus and natural cirrus survives in this contrail cirrus outbreak event. As for radiative effects, a new method to estimate top-of-atmosphere instantaneous RF in the solar and thermal range is developed based on radiative transfer model simulations exploiting in situ and lidar measurements, satellite observations and ERA5 reanalysis data for both cirrus and cirrus-free regions. Broadband irradiances estimated from our simulations compare well with satellite observations from MSG, indicating that our method provides a good representation of the real atmosphere and can thus be used to determine the RF of ice clouds. For a larger spatial area around the flight path, we find that the contrail cirrus outbreak is warming in the early morning and cooling during the day. The methods presented here and the results will be valuable for future research to constrain uncertainties in the assessment of radiative impacts of contrail cirrus and natural cirrus and for the formulation and evaluation of contrail mitigation options.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference107 articles.

1. Atlas, D., Wang, Z., and Duda, D. P.: Contrails to Cirrus–Morphology, Microphysics, and Radiative Properties, J. Appl. Meteorol. Clim., 45, 5–19, https://doi.org/10.1175/JAM2325.1, 2006.

2. Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014.

3. Baumgardner, D. and Gandrud, B.: A comparison of the microphysical and optical properties of particles in an aircraft contrail and mountain wave cloud, Geophys. Res. Lett., 25, 1129–1132, https://doi.org/10.1029/98GL00035, 1998.

4. Baumgardner, D., Brenguier, J. L., Bucholtz, A., Coe, H., DeMott, P., Garrett, T. J., Gayet, J. F., Hermann, M., Heymsfield, A., Korolev, A., Krämer, M., Petzold, A., Strapp, W., Pilewskie, P., Taylor, J., Twohy, C., Wendisch, M., Bachalo, W., and Chuang, P.: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology, Atmos. Res., 102, 10–29, https://doi.org/10.1016/j.atmosres.2011.06.021, 2011.

5. Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: In situ measurement challenges, Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr. No. 58, Am. Meteorol. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3