The effect of atmospherically relevant aminium salts on water uptake

Author:

Hyttinen NooraORCID

Abstract

Abstract. Atmospheric new particle formation is initiated by clustering of gaseous precursors, such as small acids and bases. The hygroscopic properties of those precursors therefore affect the hygroscopic properties of aerosol particles. In this work, the water uptake of different salts consisting of atmospheric small acids and amines was studied computationally using the conductor-like screening model for real solvents (COSMO-RS). This method allows for the prediction of water activities in atmospherically relevant salts that have not been included in other thermodynamics models. Water activities are reported here for binary aqueous salt solutions, as well as ternary solutions containing proxies for organic aerosol constituents. The order of the studied cation species regarding water activities is similar in sulfate, iodate, and methylsulfonate, as well as in bisulfate and nitrate. Predicted water uptake strengths (in mole fraction) conform to the following orders: tertiary > secondary > primary amines and guanidinos > amino acids. The addition of water-soluble organic to the studied salts generally leads to weaker water uptake compared to pure salts. On the other hand, water-insoluble organic likely phase separates with aqueous salt solutions, leading to minimal effects on water uptake.

Funder

Academy of Finland

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference45 articles.

1. Aoki, E., Sarrimanolis, J. N., Lyon, S. A., and Elrod, M. J.: Determining the Relative Reactivity of Sulfate, Bisulfate, and Organosulfates with Epoxides on Secondary Organic Aerosol, ACS Earth Space Chem., 4, 1793–1801, https://doi.org/10.1021/acsearthspacechem.0c00178, 2020. a, b

2. Ben-Naim, A.: Solvation Thermodynamics, Plenum Press, New York, London, ISBN 10:1475765525 or ISBN 13:978-1475765526, ISBN 9780306425387, ISBN 0306425386, 1987. a

3. Bilde, M. and Svenningsson, B.: CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase, Tellus B, 56, 128–134, https://doi.org/10.3402/tellusb.v56i2.16406, 2004. a

4. BIOVIA COSMO<i>conf</i>: Dassault Systèmes, http://www.3ds.com (last access: 29 January 2021), 2021. a

5. BIOVIA COSMO<i>therm</i>: Release 2021, Dassault Systèmes, http://www.3ds.com (last access: 1 April 2021), 2021a. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3