Trace elements in PM2.5 aerosols in East Asian outflow in the spring of 2018: emission, transport, and source apportionment

Author:

Miyakawa TakumaORCID,Ito AkinoriORCID,Zhu ChunmaoORCID,Shimizu AtsushiORCID,Matsumoto Erika,Mizuno Yusuke,Kanaya Yugo

Abstract

Abstract. Trace metals in aerosol particles impact Earth's radiative budget, human health, and ocean biogeochemistry. Semi-continuous measurements of the elemental composition of fine-mode (PM2.5) aerosols were conducted using an automated X-ray fluorescence analyzer on a remote island of Japan during the spring of 2018. Temporal variations in mass concentrations of geochemically important elements for this period, such as Pb, Cu, Si, Fe, and Mn, and their relationships with the emission tracers, carbon monoxide (CO) and black carbon (BC), were reported. The Integrated Massively Parallel Atmospheric Chemical Transport (IMPACT) model was used to evaluate the source apportionment of these components and was evaluated in terms of emissions and wet removal processes. Pb and Cu originated mainly from anthropogenic sources (98 % and 93 % on average, respectively) over the East Asian continent. Positive correlations of Pb and Cu with BC and CO and the similarity of their concentration-weighted trajectories indicated that the emission sources of these metals share the region where the large CO (and BC) emission sources are located and that CO can be regarded as a tracer of continental anthropogenic emissions. The air masses with minimized impacts of the wet removal during transport were extracted to elucidate the “top-down” emission ratio of Pb and Cu to CO, which were, for the first time, evaluated as 152.7 and 63.1 µg g−1, respectively, during the spring of 2018 in the East Asian outflow. The analysis of the tagged tracer simulations by the IMPACT model confirmed that BC and Si could be used as tracers for anthropogenic and dust emissions, respectively, during the observation period. The source apportionment of Fe and Mn in PM2.5 aerosols was conducted using Si and BC tracers, which revealed that the anthropogenic contribution was 17 % and 44 % on average, respectively. Based on the air mass origins of Fe and Mn, their anthropogenic fraction varied from 2 % to 29 % and 9 % to 68 %, respectively, during the high-PM2.5-concentration periods. However, despite the non-dominant anthropogenic contributions of Fe, they could adversely affect human health and ocean biogeochemistry, owing to their higher water solubility. The modeled BC, Pb, Cu, and Fe were evaluated by separately diagnosing their emission and transport. Ratios of modeled to observed concentrations for these components were analyzed in terms of the accumulated precipitation along the transport from the East Asian continent. The current model simulations were found to overestimate the emissions (based on the Community Emissions Data System, CEDS v2021-02-05) of BC by 44 % and underestimate Cu by 45 %, anthropogenic Fe by 28 % in East Asia, and the wet deposition rates for BC and Pb. Overall, Cu in East Asia exhibited a different nature from BC and Pb in terms of emission sources and wet removal.

Funder

Japan Society for the Promotion of Science

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3