Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol

Author:

Li Shouhao,Chen Shuiqing,Bai Shanshan,Tan Jinfang,Jiang Xiaoqian

Abstract

Abstract. Long-term excessive application of mineral fertilizer leads to phosphorus (P) accumulation, increasing the risk of P migration and loss from the soil profile. The colloids in the soil profile are important carriers for P migration due to their high P adsorption and transport capacity. It is not clearly understood how colloidal P (CP) is distributed in subsoils (<1.2 m) of a Vertisol, contributing to subsurface P loss. Understanding the depth sequence distribution and speciation of colloidal P in the soil profile is critical for a comprehensive assessment of P loss. In this study, water-extractable colloids (WECs) with the size of 0.35–2 µm were obtained from a 0–120 cm soil profile by a sedimentation and centrifugation scheme. The dissolved reactive P (DRP) and dissolved total P (DTP) in soil supernatant with particle sizes <0.35 µm were measured by molybdate blue colorimetry. Solution 31P nuclear magnetic resonance (NMR) and P K-edge XANES (X-ray absorption near-edge structure) were used to characterize the species and distribution of CP in the soil profile of fertilized farmland. Total and available P in bulk soil and colloids decreased with soil depth. The organic P (OP) contained 97–344 mg kg−1 per bulk soil and 110–630 mg kg−1 per WEC. The OP in soil profile consists of orthophosphate mono-esters and diesters primarily according to NMR results. It suggested that OP in WECs from subsoils might be affected by the translocation of CP from surface soils, probably due to soil acidification and preferential flow caused by swelling–shrinkage clays, including montmorillonite and nontronite detected by X-ray powder diffractometer (XRD) results. Additionally, the more negative zeta potential of surface soil colloids suggests the high mobility of colloidal P towards the subsoils. The CP concentration for <2 µm was about 38–93 mg P kg−1 per bulk soil, which is 6–37 times that of DRP, suggesting that CP plays a dominant role in P transport within the soil profile. The relatively small fraction of orthophosphate diesters suggests limited P assimilation by microorganisms for the accumulation of WECs containing organically bound P in subsoils. The P K-edge XANES results indicated that the proportions of Al-P, Fe-P, and inositol hexakisphosphate (IHP) of WECs decreased, but hydroxyapatite (HAP) increased with soil depth. This study showed that inorganic and organic P migrated from the surface to deeper layers along the soil profile, with soil colloids having a significant effect on P migration from both surface and subsurface layers. The findings have an important significance for soil P migration evaluation and agricultural non-point source pollution control in Vertisols.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3