Characteristics of merging at the magnetopause inferred from dayside 557.7-nm all-sky images: IMF drivers of poleward moving auroral forms

Author:

Maynard N. C.,Burke W. J.,Ebihara Y.,Ober D. M.,Wilson G. R.,Siebert K. D.,Winningham J. D.,Lanzerotti L. J.,Farrugia C. J.,Ejiri M.,Rème H.,Balogh A.,Fazakerley A.

Abstract

Abstract. We combine in situ measurements from Cluster with high-resolution 557.7 nm all-sky images from South Pole to investigate the spatial and temporal evolution of merging on the dayside magnetopause. Variations of 557.7 nm emissions were observed at a 6 s cadence at South Pole on 29 April 2003 while significant changes in the Interplanetary Magnetic Field (IMF) clock angle were reaching the magnetopause. Electrons energized at merging sites are the probable sources for 557.7 nm cusp emissions. At the same time Cluster was crossing the pre-noon cusp in the Northern Hemisphere. The combined observations confirm results of a previous study that merging events can occur at multiple sites simultaneously and vary asynchronously on time scales of 10 s to 3 min (Maynard et al., 2004). The intensity of the emissions and the merging rate appear to vary with changes in the IMF clock angle, IMF BX and the dynamic pressure of the solar wind. Most poleward moving auroral forms (PMAFs) reflect responses to changes in interplanetary medium rather than to local processes. The changes in magnetopause position required by increases in dynamic pressure are mediated by merging and result in the generation of PMAFs. Small (15–20%) variations in dynamic pressure of the solar wind are sufficient to launch PMAFs. Changes in IMF BX create magnetic flux compressions and rarefactions in the solar wind. Increases (decreases) in IMF BX strengthens |B| near northern (southern) hemisphere merging sites thereby enhancing merging rates and triggering PMAFs. When correlating responses in the two hemispheres, the presence of significant IMF BX also requires that different lag-times be applied to ACE measurements acquired ~0.1 AU upstream of Earth. Cluster observations set lag times for merging at Northern Hemisphere sites; post-noon optical emissions set times of Southern Hemisphere merging. All-sky images and magnetohydrodynamic simulations indicate that merging occurs in multiple discrete locations, rather than continuously, across the dayside for southward IMF conditions in the presence of dipole tilt. Matching optical signatures with clock-angle, BX, and dynamic pressure variations provides new insights about interplanetary control of dayside merging and associated auroral dynamics.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morphological evolution and spatial profile changes of poleward moving auroral forms;Annales Geophysicae;2023-03-21

2. 20 Years of Cluster Observations: The Magnetopause;Journal of Geophysical Research: Space Physics;2021-08

3. Multiscale Dynamics in the High‐Latitude Ionosphere;Geophysical Monograph Series;2021-03-24

4. Dayside Aurora;Space Science Reviews;2019-11-12

5. Poleward moving auroral forms (PMAFs) observed at the Yellow River Station: A statistical study of its dependence on the solar wind conditions;Journal of Atmospheric and Solar-Terrestrial Physics;2012-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3