Interchange instability of the plasma disk in Jupiter's middle magnetosphere and its relation to the radial plasma density distribution

Author:

Bespalov P. A.,Davydenko S. S.,Cowley S. W. H.,Nichols J. D.

Abstract

Abstract. We analyse the interchange or flute instability of the equatorial plasma disk in Jupiter's middle magnetosphere. Particular attention is paid to wave coupling between the dense plasma in the equatorial disk and the more rarefied plasma at higher latitudes, and between the latter plasma and the conducting ionosphere at the feet of the field lines. It is assumed that the flute perturbations are of small spatial scale in the azimuthal direction, such that a local Cartesian approximation may be employed, in which the effect of the centrifugal acceleration associated with plasma rotation is represented by an "external" force in the "radial" direction, perpendicular to the plasma flow. For such small-scale perturbations the ionosphere can also be treated as a perfect electrical conductor, and the condition is determined under which this approximation holds. We then examine the condition under which flute perturbations are at the threshold of instability, and use this to determine the corresponding limiting radial density gradient within the plasma disk. We find that when the density of the high-latitude plasma is sufficiently low compared with that of the disk, such that coupling to the ionosphere is not important, the limiting radial density profile within the disk follows that of the equatorial magnetic field strength as expected. However, as the density of the high-latitude plasma increases toward that of the equatorial disk, the limiting density profile in the disk falls increasingly steeply compared with that of the magnetic field, due to the increased stabilising effect of the ionospheric interaction. An initial examination of Galileo plasma density and magnetic field profiles, specifically for orbit G08, indicates that the latter effect is indeed operative inside radial distances of ~20 RJ. At larger distances, however, additional density smoothing effects appear to be important.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3