Assigning the causative lightning to the whistlers observed on satellites

Author:

Chum J.,Jiricek F.,Santolik O.,Parrot M.,Diendorfer G.,Fiser J.

Abstract

Abstract. We study the penetration of lightning induced whistler waves through the ionosphere by investigating the correspondence between the whistlers observed on the DEMETER and MAGION-5 satellites and the lightning discharges detected by the European lightning detection network EUCLID. We compute all the possible differences between the times when the whistlers were observed on the satellite and times when the lightning discharges were detected. We show that the occurrence histogram for these time differences exhibits a distinct peak for a particular characteristic time, corresponding to the sum of the propagation time and a possible small time shift between the absolute time assigned to the wave record and the clock of the lightning detection network. Knowing this characteristic time, we can search in the EUCLID database for locations, currents, and polarities of causative lightning discharges corresponding to the individual whistlers. We demonstrate that the area in the ionosphere through which the electromagnetic energy induced by a lightning discharge enters into the magnetosphere as whistler mode waves is up to several thousands of kilometres wide.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference29 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3