Study of spatial and temporal characteristics of L-band scintillations over the Indian low-latitude region and their possible effects on GPS navigation

Author:

Rama Rao P. V. S.,Gopi Krishna S.,Niranjan K.,Prasad D. S. V. V. D.

Abstract

Abstract. The scintillation data (S4-index) at the L-band frequency of 1.575GHz, recorded from a total of 18 GPS receivers installed at different locations in India under the GAGAN project, have provided us with a unique opportunity, for the first time in the Indian region, to make a simultaneous study of spatio-temporal and intensity characteristics of the trans-ionospheric scintillations during the 18-month, low sunspot activity (LSSA) period from January 2004 to July 2005. During this period, the occurrence of scintillations is found to be maximum around the pre-midnight hours of equinox months, with very little activity during the post-midnight hours. No significant scintillation activity is observed during the summer and winter months of the period of observation. The intensity (S4 index) of the scintillation activity is stronger around the equatorial ionization anomaly (EIA) region in the geographic latitude range of 15° to 25° N in the Indian region. These scintillations are often accompanied by the TEC depletions with durations ranging from 5 to 25 min and magnitudes from 5 to 15 TEC units which affect the positional accuracy of the GPS by 1 to 3 m. Further, during the intense scintillation events (S4>0.45≈10 dB), the GPS receiver is found to lose its lock for a short duration of 1 to 4 min, increasing the error bounds effecting the integrity of the SBAS operation. During the present period of study, a total of 395 loss of lock events are observed in the Indian EIA region; this number is likely to increase during the high sunspot activity (HSSA) period, creating more adverse conditions for the trans-ionospheric communications and the GPS-based navigation systems.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3