A lightweight broadband cavity-enhanced spectrometer for NO2 measurement on uncrewed aerial vehicles
-
Published:2022-11-18
Issue:22
Volume:15
Page:6643-6652
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Womack Caroline C.ORCID, Brown Steven S., Ciciora Steven J., Gao Ru-Shan, McLaughlin Richard J., Robinson Michael A.ORCID, Rudich YinonORCID, Washenfelder Rebecca A.
Abstract
Abstract. We describe the design and performance of a lightweight broadband cavity-enhanced spectrometer for measurement of NO2 on uncrewed aerial vehicles and light aircraft. The instrument uses a light-emitting
diode (LED) centered at 457 nm, high-finesse mirrors (reflectivity =0.999963 at 450 nm), and a grating spectrometer to determine optical extinction coefficients between 430 and 476 nm, which are fit with custom spectral fitting software and published absorption cross sections. The instrument weighs 3.05 kg and has a power consumption of less than 35 W at 25 ∘C. A ground calibration unit provides helium and zero air flows to periodically determine the
reflectivity of the cavity mirrors using known Rayleigh scattering cross
sections. The precision (1σ) for laboratory measurements is 43 ppt
NO2 in 1 s and 7 ppt NO2 in 30 s. Measurement of air with known NO2 mixing ratios in the range of 0–70 ppb agreed with the known values within 0.3 % (slope =0.997±0.007; r2=0.99983). We demonstrate instrument performance using vertical profiles of the NO2 mixing ratio acquired on board an uncrewed aerial vehicle between 0 and 110 m above ground level in Boulder, Colorado.
Funder
Cooperative Institute for Research in Environmental Sciences United States - Israel Binational Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference36 articles.
1. Bates, T. S., Quinn, P. K., Johnson, J. E., Corless, A., Brechtel, F. J., Stalin, S. E., Meinig, C., and Burkhart, J. F.: Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS), Atmos. Meas. Tech., 6, 2115–2120, https://doi.org/10.5194/amt-6-2115-2013, 2013. 2. Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh
Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861,
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999. 3. Deshler, T., Mercer, J. L., Smit, H. G. J., Stubi, R., Levrat, G., Johnson,
B. J., Oltmans, S. J., Kivi, R., Thompson, A. M., Witte, J., Davies, J.,
Schmidlin, F. J., Brothers, G., and Sasaki, T.: Atmospheric comparison of
electrochemical cell ozonesondes from different manufacturers, and with
different cathode solution strengths: The Balloon Experiment on Standards
for Ozonesondes, J. Geophys. Res.-Atmos., 113, D04307, https://doi.org/10.1029/2007JD008975, 2008. 4. Fiedler, S. E., Hese, A., and Ruth, A. A.: Incoherent broad-band
cavity-enhanced absorption spectroscopy, Chem. Phys. Lett., 371, 284–294,
https://doi.org/10.1016/s0009-2614(03)00263-x, 2003. 5. Fuchs, H., Dubé, W. P., Lerner, B. M., Wagner, N. L., Williams, E. J.,
and Brown, S. S.: A sensitive and versatile detector for atmospheric
NO2 and NOx based on blue diode laser cavity ring-down
spectroscopy, Environ. Sci. Technol., 43, 7831–7836, https://doi.org/10.1021/es902067h, 2009.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|