Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean

Author:

Smith Shantelle,Altieri Katye E.,Mdutyana MhlangabeziORCID,Walker David R.,Parrott Ruan G.,Gallie Sedick,Spence Kurt A. M.ORCID,Burger Jessica M.,Fawcett Sarah E.

Abstract

Abstract. The production and removal of ammonium (NH4+) are essential upper-ocean nitrogen cycle pathways, yet in the Southern Ocean where NH4+ has been observed to accumulate in surface waters, its mixed-layer cycling remains poorly understood. For surface seawater samples collected between Cape Town and the Marginal Ice Zone in winter 2017, we found that NH4+ concentrations were 5-fold higher than is typical for summer and lower north than south of the Subantarctic Front (0.01–0.26 µM versus 0.19–0.70 µM). Our observations confirm that NH4+ accumulates in the Southern Ocean's winter mixed layer, particularly in polar waters. NH4+ assimilation rates were highest near the Polar Front (12.9 ± 0.4 nM d−1) and in the Subantarctic Zone (10.0 ± 1.5 nM d−1), decreasing towards the Marginal Ice Zone (3.0 ± 0.8 nM d−1) despite the high ambient NH4+ concentrations in these southernmost waters, likely due to the low temperatures and limited light availability. By contrast, rates of NH4+ oxidation were higher south than north of the Polar Front (16.0 ± 0.8 versus 11.1 ± 0.5 nM d−1), perhaps due to the lower-light and higher-iron conditions characteristic of polar waters. NH4+ concentrations were also measured along five transects of the Southern Ocean (Subtropical Zone to Marginal Ice Zone) spanning the 2018/19 annual cycle. These measurements reveal that mixed-layer NH4+ accumulation south of the Subantarctic Front derives from sustained heterotrophic NH4+ production in late summer through winter that, in net, outpaces NH4+ removal by temperature-, light-, and iron-limited microorganisms. Our observations thus imply that the Southern Ocean becomes a biological source of CO2 to the atmosphere in autumn and winter not only because nitrate drawdown is weak but also because the ambient conditions favour net heterotrophy and NH4+ accumulation.

Funder

National Research Foundation

University of Cape Town

African Academy of Sciences

Department of Science and Innovation, South Africa

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3