Effects of NO<sub><i>x</i></sub> and SO<sub>2</sub> on the secondary organic aerosol formation from photooxidation of <i>α</i>-pinene and limonene
-
Published:2018-02-05
Issue:3
Volume:18
Page:1611-1628
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhao Defeng, Schmitt Sebastian H., Wang MingjinORCID, Acir Ismail-Hakki, Tillmann Ralf, Tan ZhaofengORCID, Novelli AnnaORCID, Fuchs HendrikORCID, Pullinen IidaORCID, Wegener RobertORCID, Rohrer Franz, Wildt Jürgen, Kiendler-Scharr AstridORCID, Wahner AndreasORCID, Mentel Thomas F.ORCID
Abstract
Abstract. Anthropogenic emissions such as NOx and SO2 influence the biogenic
secondary organic aerosol (SOA) formation, but detailed mechanisms and
effects are still elusive. We studied the effects of NOx and SO2 on
the SOA formation from the photooxidation of α-pinene and limonene at
ambient relevant NOx and SO2 concentrations (NOx: < 1to 20 ppb, SO2: < 0.05 to 15 ppb). In these experiments,
monoterpene oxidation was dominated by OH oxidation. We found that SO2
induced nucleation and enhanced SOA mass formation. NOx strongly
suppressed not only new particle formation but also SOA mass yield. However,
in the presence of SO2 which induced a high number concentration of
particles after oxidation to H2SO4, the suppression of the mass
yield of SOA by NOx was completely or partly compensated for. This indicates
that the suppression of SOA yield by NOx was largely due to the
suppressed new particle formation, leading to a lack of particle surface for
the organics to condense on and thus a significant influence of vapor wall
loss on SOA mass yield. By compensating for the suppressing effect on
nucleation of NOx, SO2 also compensated for the suppressing effect
on SOA yield. Aerosol mass spectrometer data show that increasing NOx
enhanced nitrate formation. The majority of the nitrate was organic nitrate
(57–77 %), even in low-NOx conditions (< ∼ 1 ppb). Organic nitrate contributed 7–26 % of total organics assuming a
molecular weight of 200 g mol−1. SOA from α-pinene photooxidation at
high NOx had a generally lower hydrogen to carbon ratio (H ∕ C), compared to
low NOx. The NOx dependence of the chemical composition can be
attributed to the NOx dependence of the branching ratio of the RO2
loss reactions, leading to a lower fraction of organic hydroperoxides and
higher fractions of organic nitrates at high NOx. While NOx
suppressed new particle formation and SOA mass formation, SO2 can
compensate for such effects, and the combining effect of SO2 and
NOx may have an important influence on SOA formation affected by
interactions of biogenic volatile organic compounds (VOCs) with anthropogenic
emissions.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference108 articles.
1. Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of
organic species with electron ionization high-resolution mass spectrometry,
Anal. Chem., 79, 8350–8358, https://doi.org/10.1021/ac071150w, 2007. 2. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun,
Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M.
R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy,
J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O ∕ C and OM/OC ratios
of primary, secondary, and ambient organic aerosols with high-resolution
time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42,
4478–4485, https://doi.org/10.1021/es703009q, 2008. 3. Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta,
O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M.,
David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J.,
Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A.,
Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M.,
Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N.,
Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V.,
Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T.,
Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo,
L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer,
R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F.,
Tome, A., Trostl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y.,
Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H.,
Williamson, C., Wimmer, D., Ye, P. L., Yli-Juuti, T., Carslaw, K. S.,
Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H.,
and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle
nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663,
2013. 4. Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic
compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. 5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx
species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|