Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

Author:

Scarnato B. V.,Vahidinia S.,Richard D. T.,Kirchstetter T. W.

Abstract

Abstract. According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC), lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200–1000 nm range) is amplified when internally mixed with NaCl (100–300 nm in radius) by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have been reported previously and are relevant to radiative transfer, climate modeling, and interpretation of remote sensing measurements.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3