Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

Author:

Schäfer K.,Grant R. H.,Emeis S.,Raabe A.,von der Heide C.,Schmid H. P.

Abstract

Abstract. Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be more readily done using spatial-integrating micro-meteorological methods than the widely-utilized small chamber measurements. Several micro-meteorological flux-gradient methods utilizing a non-intrusive path-averaging measurement method were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind and in the applicability of boundary-layer turbulence theory. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s−1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study involved quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus fluxes in the stable boundary layer.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3