Random forest meteorological normalisation models for Swiss PM<sub>10</sub> trend analysis

Author:

Grange Stuart K.ORCID,Carslaw David C.ORCID,Lewis Alastair C.,Boleti Eirini,Hueglin ChristophORCID

Abstract

Abstract. Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil–Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between −0.09 and −1.16 µg m−3 yr−1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at −0.77 µg m−3 yr−1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference61 articles.

1. Anh, V., Duc, H., and Azzi, M.: Modeling anthropogenic trends in air quality data, J. Air Waste Manage., 47, 66–71, https://doi.org/10.1080/10473289.1997.10464406, 1997.

2. Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., and Prévôt, A. S. H.: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008, Atmos. Chem. Phys., 11, 1813–1835, https://doi.org/10.5194/acp-11-1813-2011, 2011.

3. Beevers, S., Carslaw, D., Westmoreland, E., and Mittal, H.: Air pollution and emissions trends in London, Tech. rep., King's College London, Environmental Research Group Leeds University, Institute for Transport studies, available at: http://naei.defra.gov.uk/reports/reports?report_id=589 (last access: 30 April 2018), 2009.

4. Biau, G., Devroye, L., and Lugosi, G.: Consistency of Random Forests and Other Averaging Classifiers, J. Mach. Learn. Res., 9, 2015–2033, 2008.

5. Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1007/BF00058655, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3