Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment
-
Published:2020-12-09
Issue:12
Volume:13
Page:6691-6701
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Veselovskii Igor, Hu Qiaoyun, Goloub Philippe, Podvin Thierry, Korenskiy MikhailORCID, Pujol Olivier, Dubovik OlegORCID, Lopatin Anton
Abstract
Abstract. To study the feasibility of a fluorescence lidar for aerosol
characterization, the fluorescence channel is added to the LILAS
multiwavelength Mie–Raman lidar of Lille University, France. A part of
the fluorescence spectrum induced by 355 nm laser radiation is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach
has proved to have high sensitivity, allowing fluorescence signals from
weak aerosol layers to be detected and the fluorescence backscattering
coefficient from the ratio of fluorescence and nitrogen Raman backscatters to be calculated.
Observations were performed during the November 2019–February 2020 period.
The fluorescence capacity (ratio of fluorescence to elastic backscattering
coefficients), measured under conditions of low relative humidity, varied in
a wide range, being the highest for the smoke and the lowest for the dust
particles. The results presented also demonstrate that the fluorescence
measurements can be used for monitoring the aerosol inside the cloud layers.
Funder
Institut national des sciences de l'Univers Horizon 2020 Région Hauts-de-France Ministère de l'Enseignement Supérieur et de la Recherche European Space Agency
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference33 articles.
1. Alexandrov, M. and Mishchenko, M.: Information content of bistatic lidar
observations of aerosols from space, Opt. Expr., 25, 134–150, 2017. 2. Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann,
W., and Michaelis, W.: Combined Raman elastic-backscatter lidar for vertical
profiling of moisture, aerosols extinction, backscatter, and lidar ratio,
Appl. Phys. B, 55, 18–28, 1992. 3. Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012. 4. Burton, S. P., Chemyakin, E., Liu, X., Knobelspiesse, K., Stamnes, S., Sawamura, P., Moore, R. H., Hostetler, C. A., and Ferrare, R. A.: Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals, Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, 2016. 5. Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanre, D., and Slutsker, I.: Variability of absorption and optical properties of
key aerosol types observed in worldwide locations, J. Atmos. Sci., 59,
590–608, 2002.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|