Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce)
-
Published:2020-02-21
Issue:1
Volume:11
Page:199-222
-
ISSN:1869-9529
-
Container-title:Solid Earth
-
language:en
-
Short-container-title:Solid Earth
Author:
Bergemann Christian A.ORCID, Gnos EdwinORCID, Berger AlfonsORCID, Janots Emilie, Whitehouse Martin J.ORCID
Abstract
Abstract. Zoned hydrothermal monazite-(Ce) from Alpine-type fissures and clefts is used to gain new insights into the tectonic history of the Lepontine Dome in the Central Alps and the timing of deformation along the Rhone-Simplon Fault zone on the dome's western end. Hydrothermal monazites-(Ce) (re)crystallization ages directly date deformation that induces changes in physicochemical conditions of the fissure or cleft fluid. A total of 480 secondary ion mass spectrometry (SIMS) spot analyses from 20 individual crystals, including co-type material of the monazite-(Nd) type locality, record ages for the time of ∼19 to 2.7 Ma, with individual grains recording age ranges of 2 to 7.5 Myr.
The combination of these age data with geometric considerations and spatial distribution across the Lepontine region gives a more precise young exhumation history for the area. At the northeastern and southwestern edges of the Lepontine Dome, units underwent hydrothermal monazite-(Ce) growth at 19–12.5 and 16.5–10.5 Ma, respectively, while crystallization of monazite-(Ce) in the eastern Lepontine Dome started later, at 15–10 Ma. Fissure monazite-(Ce) along the western limit of the dome reports younger ages of 13–7 Ma. A younger age group around 8–5 Ma is limited to fissures and clefts associated with the Simplon normal fault and related strike-slip faults such as the Rhone Fault. The data set shows that the monazite-(Ce) age record directly links the fluid-induced interaction between fissure mineral and host rock to the Lepontine Dome's evolution in space and time.
A comparison between hydrothermal monazite-(Ce) and thermochronometric data suggest that hydrothermal monazite-(Ce) dating may allow us to identify areas of slow exhumation or cooling rates during ongoing tectonic activity.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Reference84 articles.
1. Aleinikoff, J. N., Schenk, W. S., Plank, M. O., Srogi, L., Fanning, C. M., Kamo, L., and Bosbyshell, H.: Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol. Soc. Am. Bull., 118, 39–64, https://doi.org/10.1130/B25659.1, 2006. 2. Allaz, J., Engi, M., Berger, A., and Villa, I. M.: The effects of retrograde reactions and of diffusion on 40Ar∕39Ar ages of micas, J. Petrol., 52, 691–716, https://doi.org/10.1093/petrology/egq100, 2011. 3. Beard, P.: Ueber den Wechsel der Mineralfazies in der Wurzelzone des Penninikums, Schweiz. Miner. Petrog., 38, 363–374, https://doi.org/10.5169/seals-29612, 1958. 4. Bergemann, C., Gnos, E., Berger, A., Whitehouse, M., Mullis, J., Pettke, T., and Janots, E.: Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the central Alps, Switzerland, Tectonics, 36, 671–689, https://doi.org/10.1002/2016TC004407, 2017. 5. Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M. J., Mullis, J., Walter, F., and Bojar, H. P.: Constraining long-term fault activity in the brittle domain through in-situ dating of hydrothermal monazite, Terra Nova, 30, 440–446, https://doi.org/10.1111/ter.12360, 2018.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|