The potential contribution of organic salts to new particle growth

Author:

Barsanti K. C.,McMurry P. H.,Smith J. N.

Abstract

Abstract. Field and lab measurements suggest that low-molecular weight (MW) organic acids and bases exist in accumulation and nucleation mode particles, despite their relatively high pure-liquid vapor pressures. The mechanism(s) by which such compounds contribute to the mass growth of existing aerosol particles and newly formed particles has not been thoroughly explored. One mechanism by which low-MW compounds may contribute to new particle growth is through the formation of organic salts. In this paper we use thermodynamic modeling to explore the potential for organic salt formation by atmospherically relevant organic acids and bases for two system types: one in which the relative contribution of ammonia vs. amines in forming organic salts was evaluated, the other in which the decrease in volatility of organic acids and bases due to organic salt formation was assessed. The modeling approach employed relied heavily on group contribution and other estimation methods for necessary physical and chemical parameters. The results of this work suggest that amines may be an important contributor to organic salt formation, and that experimental data are greatly needed to improve our understanding of organic salt formation in atmospherically relevant systems and to accurately predict the potential contribution of such salts to new particle growth.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3