Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM

Author:

Riley W. J.,Subin Z. M.,Lawrence D. M.,Swenson S. C.,Torn M. S.,Meng L.,Mahowald N. M.,Hess P.

Abstract

Abstract. Terrestrial net CH4 surface fluxes often represent the difference between much larger gross production and consumption fluxes and depend on multiple physical, biological, and chemical mechanisms that are poorly understood and represented in regional- and global-scale biogeochemical models. To characterize uncertainties, study feedbacks between CH4 fluxes and climate, and to guide future model development and experimentation, we developed and tested a new CH4 biogeochemistry model (CLM4Me) integrated in the land component (Community Land Model; CLM4) of the Community Earth System Model (CESM1). CLM4Me includes representations of CH4 production, oxidation, aerenchyma transport, ebullition, aqueous and gaseous diffusion, and fractional inundation. As with most global models, CLM4 lacks important features for predicting current and future CH4 fluxes, including: vertical representation of soil organic matter, accurate subgrid scale hydrology, realistic representation of inundated system vegetation, anaerobic decomposition, thermokarst dynamics, and aqueous chemistry. We compared the seasonality and magnitude of predicted CH4 emissions to observations from 18 sites and three global atmospheric inversions. Simulated net CH4 emissions using our baseline parameter set were 270, 160, 50, and 70 Tg CH4 yr−1 globally, in the tropics, in the temperate zone, and north of 45° N, respectively; these values are within the range of previous estimates. We then used the model to characterize the sensitivity of regional and global CH4 emission estimates to uncertainties in model parameterizations. Of the parameters we tested, the temperature sensitivity of CH4 production, oxidation parameters, and aerenchyma properties had the largest impacts on net CH4 emissions, up to a factor of 4 and 10 at the regional and gridcell scales, respectively. In spite of these uncertainties, we were able to demonstrate that emissions from dissolved CH4 in the transpiration stream are small (<1 Tg CH4 yr−1) and that uncertainty in CH4 emissions from anoxic microsite production is significant. In a 21st century scenario, we found that predicted declines in high-latitude inundation may limit increases in high-latitude CH4 emissions. Due to the high level of remaining uncertainty, we outline observations and experiments that would facilitate improvement of regional and global CH4 biogeochemical models.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3