Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N<sub>2</sub>O isotope distribution

Author:

Kaiser J.,Engel A.,Borchers R.,Röckmann T.

Abstract

Abstract. A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O). Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N), mid-latitude (southern France, 44° N) and tropical sites (Hyderabad/India, 18° N). Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values) and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D) models for further data interpretation. In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects) increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992). Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two-end-member mixing, but could be explained by continuous weak mixing between intravortex and extravortex air (Plumb et al., 2000). However, it appears that none of the simple approaches described here can capture all features of the stratospheric N2O isotope distribution, again justifying the use of 3-D models. Finally, correlations between 18O/16O and average 15N/14N isotope ratios or between the position-dependent 15N/14N isotope ratios show that photo-oxidation makes a large contribution to the total N2O sink in the lower stratosphere (possibly up to 100% for N2O mixing ratios above 300 nmol mol−1). Towards higher altitudes, the temperature dependence of these isotope correlations becomes visible in the stratospheric observations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3