Author:
Rossignol S.,Chiappini L.,Perraudin E.,Rio C.,Fable S.,Valorso R.,Doussin J. F.
Abstract
Abstract. The gas/particle partitioning behaviour of the semi-volatile fraction of secondary organic matter and the associated multiphase chemistry are key features to accurately evaluate climate and health impacts of secondary organic aerosol (SOA). However, today, the partitioning of oxygenated secondary species is rarely assessed in experimental SOA studies and SOA modelling is still largely based on estimated partitioning data. This paper describes a new analytical approach, solvent-free and easy to use, to explore the chemical composition of the secondary organic matter at a molecular scale in both gas and particulate phases. The method is based on thermal desorption (TD) of gas and particulate samples, coupled with gas chromatography (GC) and mass spectrometry (MS), with derivatisation on sampling supports. Gaseous compounds were trapped on Tenax TA adsorbent tubes pre-coated with pentafluorobenzylhydroxylamine (PFBHA) or N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA). Particulate samples were collected onto quartz or Teflon-quartz filters and subsequently subjected to derivatisation with PFBHA or MTBSTFA before TD-GC/MS analysis. Method development and validation are presented for an atmospherically relevant range of organic acids and carbonyl and hydroxyl compounds. Application of the method to a limonene ozonolysis experiment conducted in the EUPHORE simulation chamber under simulated atmospheric conditions of low concentrations of limonene precursor and relative humidity, provides an overview of the method capabilities. Twenty-five compounds were positively or tentatively identified, nine being in both gaseous and particulate phases; and twelve, among them tricarboxylic acids, hydroxyl dicarboxylic acids and oxodicarboxylic acids, being detected for the first time.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献