Millennial variability of terrigenous transport to the central–southern Peruvian margin during the last deglaciation (18–13 kyr BP)

Author:

Yseki MarcoORCID,Turcq Bruno,Caquineau Sandrine,Salvatteci RenatoORCID,Solis JoséORCID,Skilbeck C. Gregory,Velazco Federico,Gutiérrez Dimitri

Abstract

Abstract. Reconstructing precipitation and wind from the geological record could help researchers understand the potential changes in precipitation and wind dynamics in response to climate change in Peru. The last deglaciation offers natural experimental conditions to test the response of precipitation and wind dynamics to high-latitude forcing. While considerable research has been done to reconstruct precipitation variability during the last deglaciation in the Atlantic sector of South America, the Pacific sector of South America has received little attention. This work aims to fill this gap by reconstructing types of terrigenous transport to the central–southern Peruvian margin (12 and 14∘ S) during the last deglaciation (18–13 kyr BP). For this purpose, we used grain-size distribution in sediments of marine core M77/2-005-3 (Callao, 12∘ S) and core G14 (Pisco, 14∘ S). We analyzed end-members (EMs) to identify grain-size components and reconstruct potential sources and transport processes of terrigenous material across time. We identified four end-members for both Callao and Pisco sediments. In Callao, we propose that the changes in the contributions of EM4 (101 µm) and EM2 (58 µm) mainly reflect the hydrodynamic energy and diffuse sources, respectively, while the variations in EM3 (77 µm) and EM1 (11 µm) reflect changes in the eolian and fluvial inputs, respectively. In Pisco, where there are strong winds and an extensive coastal desert, changes in the contribution of EM1 (10 µm) reflect changes in river inputs, while EM2 (52 µm), EM3 (75 µm), and EM4 (94 µm) reflect an eolian origin. At millennial scale, our record shows an increase in the fluvial inputs during the last part of Heinrich Stadial 1 (∼16–14.7 kyr BP) at both locations. This increase was linked to higher precipitation in the Andes related to a reduction of the Atlantic Meridional Overturning Circulation and meltwater discharge in the North Atlantic. In contrast, during the Bølling–Allerød interstadial (∼14.7–13 kyr BP), there was an eolian input increase, associated with stronger winds and lower precipitation that indicate an expansion of the South Pacific Subtropical High. These conditions would correspond to a northern displacement of the Intertropical Convergence Zone–South Pacific Subtropical High system associated with a stronger Walker circulation. Our results suggest that variations in river discharge and changes in surface wind intensity in the western margin of South America during the last deglaciation were sensitive to Atlantic Meridional Overturning Circulation variations and the Walker circulation on millennial timescales. In the context of global warming, large-scale increases in precipitation and fluvial discharge in the Andes as a result of a declining Atlantic Meridional Overturning Circulation and southward displacement of the Intertropical Convergence Zone should be considered.

Funder

Deutsche Forschungsgemeinschaft

Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica

Département Soutien et Formation, Institut de Recherche pour le Développement

Belmont Forum

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3