Combined preliminary–detailed design of wind turbines
-
Published:2016-05-30
Issue:1
Volume:1
Page:71-88
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Bortolotti PietroORCID, Bottasso Carlo L.ORCID, Croce AlessandroORCID
Abstract
Abstract. This paper is concerned with the holistic optimization of wind turbines. A multi-disciplinary optimization procedure is presented that marries the overall sizing of the machine in terms of rotor diameter and tower height (often termed “preliminary design”) with the detailed sizing of its aerodynamic and structural components. The proposed combined preliminary–detailed approach sizes the overall machine while taking into full account the subtle and complicated couplings that arise due to the mutual effects of aerodynamic and structural choices. Since controls play a central role in dictating performance and loads, control laws are also updated accordingly during optimization. As part of the approach, rotor and tower are sized simultaneously, even in this case capturing the mutual effects of one component over the other due to the tip clearance constraint. The procedure, here driven by detailed models of the cost of energy, results in a complete aero-structural design of the machine, including its associated control laws. The proposed methods are tested on the redesign of two wind turbines, a 2.2 MW onshore machine and a large 10 MW offshore one. In both cases, the optimization leads to significant changes with respect to the initial baseline configurations, with noticeable reductions in the cost of energy. The novel procedures are also exercised on the design of low-induction rotors for both considered wind turbines, showing that they are typically not competitive with conventional high-efficiency rotors.
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference34 articles.
1. Ashuri, T., Zaaijer, M. B., Martins, J. R. R. A., van Bussel, G. J. W., and van Kuik, G. A. M.: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy, Renew. Energ., 68, 893–905 https://doi.org/10.1016/j.renene.2014.02.045, 2014. 2. Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Andersen, P. B., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW reference wind turbine, DTU Wind Energy Report-I-0092, July, 2013. 3. Bauchau, O. A., Epple, A., and Bottasso, C. L.: Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations, J. Comput. Nonlin. Dyn., 4, 021007, https://doi.org/10.1115/1.3079826, 2009. 4. Bauchau, O. A., Bottasso, C. L., and Trainelli, L.: Robust integration schemes for flexible multibody systems, Comput. Meth. Appl. Mech. Eng., 192, 395–420, https://doi.org/10.1016/S0045-7825(02)00519-4, 2003. 5. Bauchau, O. A.: Flexible Multibody Dynamics, in: Solid Mechanics and its Applications, Springer Netherlands, ISBN:978-94-007-0334-6, 2011.
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|