Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation

Author:

Beall Charlotte M.ORCID,Michaud Jennifer M.,Fish Meredith A.,Dinasquet JulieORCID,Cornwell Gavin C.ORCID,Stokes M. Dale,Burkart Michael D.,Hill Thomas C.ORCID,DeMott Paul J.ORCID,Prather Kimberly A.ORCID

Abstract

Abstract. Ice-nucleating particles (INPs) represent a rare subset of aerosol particles that initiate cloud droplet freezing at temperatures above the homogenous freezing point of water (−38 ∘C). Considering that the ocean covers 71 % of the Earth's surface and represents a large potential source of INPs, it is imperative that the identities, properties and relative emissions of ocean INPs become better understood. However, the specific underlying drivers of marine INP emissions remain largely unknown due to limited observations and the challenges associated with isolating rare INPs. By generating isolated nascent sea spray aerosol (SSA) over a range of biological conditions, mesocosm studies have shown that marine microbes can contribute to INPs. Here, we identify 14 (30 %) cultivable halotolerant ice-nucleating microbes and fungi among 47 total isolates recovered from precipitation and aerosol samples collected in coastal air in southern California. Ice-nucleating (IN) isolates collected in coastal air were nucleated ice from extremely warm to moderate freezing temperatures (−2.3 to −18 ∘C). While some Gammaproteobacteria and fungi are known to nucleate ice at temperatures as high as −2 ∘C, Brevibacterium sp. is the first Actinobacteria found to be capable of ice nucleation at a relatively high freezing temperature (−2.3 ∘C). Air mass trajectory analysis demonstrates that marine aerosol sources were dominant during all sampling periods, and phylogenetic analysis indicates that at least 2 of the 14 IN isolates are closely related to marine taxa. Moreover, results from cell-washing experiments demonstrate that most IN isolates maintained freezing activity in the absence of nutrients and cell growth media. This study supports previous studies that implicated microbes as a potential source of marine INPs, and it additionally demonstrates links between precipitation, marine aerosol and IN microbes.

Funder

National Science Foundation

U.S. Army Corps of Engineers

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3