Current and future rainfall-driven flood risk from hurricanes in Puerto Rico under 1.5 and 2 °C climate change
-
Published:2024-02-05
Issue:2
Volume:24
Page:375-396
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Archer LeanneORCID, Neal JeffreyORCID, Bates PaulORCID, Vosper EmilyORCID, Carroll Dereka, Sosa Jeison, Mitchell DanielORCID
Abstract
Abstract. Flooding associated with Hurricane Maria in 2017 had devastating consequences for lives and livelihoods in Puerto Rico. Yet, an understanding of current and future flood risk on small islands like Puerto Rico is limited. Thus, efforts to build resilience to flooding associated with hurricanes remain constrained. Here, we take an event set of hurricane rainfall estimates from a synthetic hurricane rainfall simulator as the input to an event-based rainfall-driven flood inundation model using the hydrodynamic code LISFLOOD-FP. Validation of our model against high-water-mark data for Hurricane Maria demonstrates the suitability of this model for estimating flood hazard in Puerto Rico. We produce event-based flood hazard and population exposure estimates for the present day and the future under the 1.5 and 2 ∘C Paris Agreement goals. Population exposure to flooding from hurricane rainfall in Puerto Rico for the present-day climate is approximately 8 %–10 % of the current population for a 5-year return period, with an increase in population exposure to flooding by 2 %–15 % and 1 %–20 % under 1.5 and 2 ∘C futures (5-year return period). This research demonstrates the significance of the 1.5 ∘C Paris Agreement goal for Small Island Developing States, providing the first event-based estimates of flooding from hurricane rainfall under climate change for a small island.
Funder
UK Research and Innovation
Publisher
Copernicus GmbH
Reference153 articles.
1. Aldridge, T., Gunawan, O., Moore, R. J., Cole, S. J., Boyce, G., and Cowling, R.: Developing an impact library for forecasting surface water flood risk, J. Flood Risk Manage., 13, e12641, https://doi.org/10.1111/jfr3.12641, 2020. 2. Allen, A., Zilbert Soto, L., Wesely, J., Belkow, T., Ferro, V., Lambert, R., Langdown, I., and Samanamú, A.: From state agencies to ordinary citizens: reframing risk-mitigation investments and their impact to disrupt urban risk traps in Lima, Peru, Environ. Urban., 29, 477–502, https://doi.org/10.1177/0956247817706061, 2017. 3. Archer, L., Neal, J., Bates, P., Vosper, E., Carroll, D., Sosa, J., and Mitchell, D.: Puerto Rico Probability of Flood Inundation Maps, University of Bristol Data Repository [data set], https://doi.org/10.5523/bris.2qtinf5lw52u52snyl5ruwekef, 2023. 4. Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401, https://doi.org/10.1007/S10584-014-1084-5, 2016. 5. Audi, C., Segarra, L., Irwin, C., Craig, P., Skelton, C., and Bestul, N.: Ascertainment of the Estimated Excess Mortality from Hurricane María in Puerto Rico, Washington, DC, https://publichealth.gwu.edu/sites/g/files/zaxdzs4586/files/2023-06/acertainment-of-the-estimated-excess-mortality-from-hurricane (last access: 1 February 2024), 2018.
|
|