Multi-species inversion and IAGOS airborne data for a better constraint of continental-scale fluxes

Author:

Boschetti Fabio,Thouret Valerie,Maenhout Greet JanssensORCID,Totsche Kai UweORCID,Marshall JuliaORCID,Gerbig ChristophORCID

Abstract

Abstract. Airborne measurements of CO2, CO, and CH4 proposed in the context of IAGOS (In-service Aircraft for a Global Observing System) will provide profiles from take-off and landing of airliners in the vicinity of major metropolitan areas useful for constraining sources and sinks. A proposed improvement of the top-down method to constrain sources and sinks is the use of a multispecies inversion. Different species such as CO2 and CO have partially overlapping emission patterns for given fuel-combustion-related sectors, and thus share part of the uncertainties related both to the a priori knowledge of emissions and to model–data mismatch error. We use a regional modelling framework consisting of the Lagrangian particle dispersion model STILT (Stochastic Time-Inverted Lagrangian Transport) combined with the high-resolution (10 km × 10 km) EDGARv4.3 (Emission Database for Global Atmospheric Research) emission inventory, differentiated by emission sector and fuel type for CO2, CO, and CH4, and combined with the VPRM (Vegetation Photosynthesis and Respiration Model) for biospheric fluxes of CO2. Applying the modelling framework to synthetic IAGOS profile observations, we evaluate the benefits of using correlations between different species' uncertainties on the performance of the atmospheric inversion. The available IAGOS CO observations are used to validate the modelling framework. Prior uncertainty values are conservatively assumed to be 20 %, for CO2 and 50 % for CO and CH4, while those for GEE (gross ecosystem exchange) and respiration are derived from existing literature. Uncertainty reduction for different species is evaluated in a domain encircling 50 % of the profile observations' surface influence over Europe. We found that our modelling framework reproduces the CO observations with an average correlation of 0.56, but simulates lower mixing ratios by a factor of 2.8, reflecting a low bias in the emission inventory. Mean uncertainty reduction achieved for CO2 fossil fuel emissions is roughly 38 %; for photosynthesis and respiration flux it is 41 and 44 % respectively. For CO and CH4 the uncertainty reduction is roughly 63 and 67 % respectively. Considering correlation between different species, posterior uncertainty can be reduced by up to 23 %; such a reduction depends on the assumed error structure of the prior and on the considered time frame. The study suggests a significant uncertainty constraint on regional emissions using multi-species inversions of IAGOS in situ observations.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference48 articles.

1. Berezin, E. V., Konovalov, I. B., Ciais, P., Broquet, G., Wu, L., Beekmann, M, Hadji-Lazaro, J., Clerbaux, C., Andreae, M. O., Kaiser, J. W., and Schulze, E. D.: CO2 emissions from wildfires in Siberia: FRP measurement based estimates constrained by satellite and ground based observations of co-emitted species, EGU General Assembly 2013, 7–12 April 2013, Vienna, Austria, Geophysical Research Abstracts, 15, EGU2013-6796, 2013.

2. Bergamaschi, P., Hein, R., Heimann, M., and Crutzen, P. J.: Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 1909–1927, 2000.

3. Boschetti, F., Chen, H., Thouret, V., Nedelec, P., Janssens-Maenhout, G., and Gerbig, C.: On the representation of IAGOS/MOZAIC vertical profiles in chemical transport models: contribution of different error sources in the example of carbon monoxide, Tellus B, 67, 28292, https://doi.org/10.3402/tellusb.v67.28292, 2015.

4. Brioude, J., Petron, G., Frost, G. J., Ahmadov, R., Angevine, W. M., Hsie, E. Y., Kim, S. W., Lee, S. H., McKeen, S. A., Trainer, M., Fehsenfeld, F. C., Holloway, J. S., Peischl, J., Ryerson, T. B., and Gurney, K. R.: A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO 2emission from Houston, Texas, J. Geophys. Res., 117, D05312, https://doi.org/10.1029/2011JD016918, 2012.

5. Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3