Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability

Author:

He CenlinORCID,Valayamkunnath Prasanth,Barlage Michael,Chen Fei,Gochis David,Cabell Ryan,Schneider Tim,Rasmussen Roy,Niu Guo-Yue,Yang Zong-LiangORCID,Niyogi Dev,Ek Michael

Abstract

Abstract. The widely used open-source community Noah with multi-parameterization options (Noah-MP) land surface model (LSM) is designed for applications ranging from uncoupled land surface hydrometeorological and ecohydrological process studies to coupled numerical weather prediction and decadal global or regional climate simulations. It has been used in many coupled community weather, climate, and hydrology models. In this study, we modernize and refactor the Noah-MP LSM by adopting modern Fortran code standards and data structures, which substantially enhance the model modularity, interoperability, and applicability. The modernized Noah-MP is released as the version 5.0 (v5.0), which has five key features: (1) enhanced modularization as a result of re-organizing model physics into individual process-level Fortran module files, (2) an enhanced data structure with new hierarchical data types and optimized variable declaration and initialization structures, (3) an enhanced code structure and calling workflow as a result of leveraging the new data structure and modularization, (4) enhanced (descriptive and self-explanatory) model variable naming standards, and (5) enhanced driver and interface structures to be coupled with the host weather, climate, and hydrology models. In addition, we create a comprehensive technical documentation of the Noah-MP v5.0 and a set of model benchmark and reference datasets. The Noah-MP v5.0 will be coupled to various weather, climate, and hydrology models in the future. Overall, the modernized Noah-MP allows a more efficient and convenient process for future model developments and applications.

Funder

U.S. Geological Survey

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3