Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

Author:

Kurian S.,Roy R.,Repeta D. J.,Gauns M.,Shenoy D. M.,Suresh T.,Sarkar A.,Narvenkar G.,Johnson C. G.,Naqvi S. W. A.

Abstract

Abstract. Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography- mass spectrometry (LCMS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the periods of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isoreneiratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll-b containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl-e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the Tillari Reservoir was computed to be 2.4 gC m−2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m−2). These results highlight the importance of anoxygenic photosynthetic biomass in tropical freshwater systems. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl-e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photoautotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl-e isomers was noted at 0.2 % of the surface incident light). This shows that the vertical distribution of photoautotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S provides a suitable biogeochemical environment for them to flourish.

Publisher

Copernicus GmbH

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3