Factors that influence surface PM<sub>2.5</sub> values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ

Author:

Crumeyrolle S.ORCID,Chen G.,Ziemba L.,Beyersdorf A.ORCID,Thornhill L.,Winstead E.,Moore R. H.ORCID,Shook M. A.,Hudgins C.,Anderson B. E.

Abstract

Abstract. During the NASA DISCOVER-AQ campaign over the US Baltimore, MD–Washington, D.C., metropolitan area in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in situ profiles were coincident with ground-based remote sensing (AERONET) and in situ (PM2.5) measurements. Here, we use this data set to study the correlation between the PM2.5 observations at the surface and the column integrated measurements. Aerosol optical depth (AOD550 nm) calculated with the extinction (550 nm) measured during the in situ profiles was found to be strongly correlated with the volume of aerosols present in the boundary layer (BL). Despite the strong correlation, some variability remains, and we find that the presence of aerosol layers above the BL (in the buffer layer – BuL) introduces significant uncertainties in PM2.5 estimates based on column-integrated measurements (overestimation of PM2.5 by a factor of 5). This suggests that the use of active remote sensing techniques would dramatically improve air quality retrievals. Indeed, the relationship between the AOD550 nm and the PM2.5 is strongly improved by accounting for the aerosol present in and above the BL (i.e., integrating the aerosol loading from the surface to the top of the BuL). Since more than 15% of the AOD values observed during DISCOVER-AQ are dominated by aerosol water uptake, the f(RH)amb (ratio of scattering coefficient at ambient relative humidity (RH) to scattering coefficient at low RH; see Sect. 3.2) is used to study the impact of the aerosol hygroscopicity on the PM2.5 retrievals. The results indicate that PM2.5 can be predicted within a factor up to 2 even when the vertical variability of the f(RH)amb is assumed to be negligible. Moreover, f(RH = 80%) and RH measurements performed at the ground may be used to estimate the f(RH)amb during dry conditions (RHBL < 55%).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3