A semi-Lagrangian view of ozone production tendency in North American outflow in the summers of 2009 and 2010

Author:

Zhang B.ORCID,Owen R. C.,Perlinger J. A.,Kumar A.,Wu S.,Val Martin M.ORCID,Kramer L.,Helmig D.,Honrath R. E.

Abstract

Abstract. The Pico Mountain Observatory, located at 2225 m a.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the observatory, ozone enhancement (> 55 ppbv) in North American outflows was observed, and efficient ozone production in these outflows was postulated. This study is focused on determining the causes for high d[O3] / d[CO] values (~1 ppbv ppbv−1) observed in the summers of 2009 and 2010. The folded retroplume technique, developed by Owen and Honrath (2009), was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields. The folded result provides a semi-Lagrangian view of polluted North American outflow in terms of physical properties and chemical processes, including production/loss rate of ozone and NOx produced by lightning and thermal decomposition of peroxy acetyl nitrate (PAN). Two transport events from North America were identified for detailed analysis. High d[O3] / d[CO] was observed in both events, but due to differing transport mechanisms, ozone production tendency differed between the two. A layer of net ozone production was found at 2 km a.s.l. over the Azores in the first event plume, apparently driven by PAN decomposition during subsidence of air mass in the Azores–Bermuda High. In the second event, net ozone loss occurred during transport in the lower free troposphere, yet observed d[O3] / d[CO] was high. We estimate that in both events, CO loss through oxidation contributed significantly to d[O3] / d[CO] enhancement. Thus, it is not appropriate to use CO as a passive tracer of pollution in these events. In general, use of d[O3] / d[CO] as an indicator of net ozone production/loss may be invalid for any situation in which oxidants are elevated. Based on our analysis, use of d[O3] / d[CO] to diagnose ozone enhancement without verifying the assumption of negligible CO loss is not advisable.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3