Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene

Author:

Tillmann R.,Hallquist M.,Jonsson Å. M.,Kiendler-Scharr A.,Saathoff H.,Iinuma Y.,Mentel Th. F.

Abstract

Abstract. The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA pPA0 to the range of 0.01–0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3 μg−1 and the total mass yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3