Impact of a future H<sub>2</sub>-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

Author:

Wang D.,Jia W.,Olsen S. C.,Wuebbles D. J.,Dubey M. K.,Rockett A. A.

Abstract

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario. The adoption of H2 internal combustion engines would decrease tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and would decrease those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States could expect to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector were to be adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic, particularly in megacities with severe, intensifying air-quality problems.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference49 articles.

1. Abe, R.: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photoch. Photobio. C, 11, 179–209, 2010.

2. Appel, K. W., Gilliland, A. B., Sarwar, G., and Gilliam, R. C.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance Part I – Ozone, Atmos. Environ., 41, 9603–9615, 2007.

3. Appel, K. W., Bhave, P. V., Gilliland, A. B., Sarwar, G., and Roselle, S. J.: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II – particulate matter, Atmos. Environ., 42, 6057–6066, 2008.

4. Barnes, D. H., Wofsy, S. C., Fehlau, B. P., Gottlieb, E. W., Elkins, J. W., Dutton, G. S., and Novelli, P. C.: Hydrogen in the atmosphere: Observations above a forest canopy in a polluted environment, J. Geophys. Res., 108, https://doi.org/10.1029/2001JD001199, 2003.

5. Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3