The role of synoptic processes in mudflow formation in the piedmont areas of Uzbekistan
-
Published:2018-11-07
Issue:11
Volume:18
Page:2893-2919
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Mamadjanova Gavkhar, Wild SimonORCID, Walz Michael A., Leckebusch Gregor C.ORCID
Abstract
Abstract. The purpose of this study is to understand atmospheric factors, which cause mudflow variability on interannual and longer timescales, from local to synoptic scales. In a first step, historical data of mudflow occurrences in Uzbekistan provided by the Centre of Hydrometeorological Service of the Republic of Uzbekistan (Uzhydromet) for more than 140 years were analysed. During the investigation period a total of about 3000 mudflow events were observed with about 21 events per year on average. The majority of mudflows occur during the advection of westerly airflow when moist air from central and southern Europe reaches Uzbekistan. This synoptic weather type (SWT) can be related to one of the 15 primary synoptic circulation types over central Asia (CA) and Uzbekistan, which were subjectively derived by Bugayev and Giorgio in the 1930s and 1940s. To understand the main atmospheric regimes steering the variability in mudflow occurrences, we additionally applied an objective classification following the circulation weather type (CWT) approach. By means of the CWT approach, we found that on mudflow days the frequencies of cyclonic (C), westerly (W), south-westerly (SW) and north-westerly (NW) stream flows are increased in comparison to the climatological frequency of the occurrence of these circulation weather patterns. Results confirm that CWT westerly airflow initiates relatively more mudflow events comparing to other CWTs in the study area. An integrated approach of the CWT classification and an antecedent daily rainfall model are combined together in logistic regression analysis to construct a mudflow-triggering precipitation threshold for every CWT class. In general W, SW and C weather types require less antecedent rainfall to trigger mudflow occurrences in the study area. This technique is thus shown to be applicable to coarse-resolution climate model diagnostics.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference59 articles.
1. Aizen, V. B., Aizen, E. M., Melack, J. M., Kreutz, K. J., and Cecil, L. D.: Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia, J. Geophys. Res.-Atmos., 109, D08304, https://doi.org/10.1029/2003JD003894, 2004. 2. Aksarin, S. I. and Inagamova, S. I.: Sketches of Hydrometeorology in Central Asia, Gidrometeoizdat, Saint-Petersburg, 440 pp., 1993 (in Russian). 3. Bai, S., Wang, J., Thiebes, B., Cheng, C., and Yang, Y.: Analysis of the relationship of landslide occurrence with rainfall: a case study of Wudu County, China, Arab. J. Geosci., 7, 1277–1285, https://doi.org/10.1007/s12517-013-0939-9, 2014. 4. Bruce, J. P. and Clark, R. H.: Introduction to Hydrometeorology, Pergamon Press, 319pp., 1966. 5. Bugayev, V. A.: Climate in Central Asia and Kazakhstan, Academy of Sciense of the Uzbek SSR, Tashkent, 24 pp., 1946 (in Russian).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|