Evidence for impulsive solar wind plasma penetration through the dayside magnetopause

Author:

Lundin R.,Sauvaud J.-A.,Rème H.,Balogh A.,Dandouras I.,Bosqued J. M.,Carlson C.,Parks G. K.,Möbius E.,Kistler L. M.,Klecker B.,Amata E.,Formisano V.,Dunlop M.,Eliasson L.,Korth A.,Lavraud B.,McCarthy M.

Abstract

Abstract. This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS) on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978). The injected plasma clouds, hereafter termed "plasma transfer events", (PTEs), (Woch and Lundin, 1991), are temporal in nature and relatively limited in size. They are initially moving inward with a high velocity and a magnetic signature that makes them essentially indistinguishable from regular magnetosheath encounters. Once inside the magnetosphere, however, PTEs are more easily distinguished from magnetopause encounters. The PTEs may still be moving while embedded in an isotropic background of energetic trapped particles but, once inside the magnetosphere, they expand along magnetic field lines. However, they frequently have a significant transverse drift component as well. The drift is localised, thus constituting an excess momentum/motional emf generating electric fields and currents. The induced emf also acts locally, accelerating a pre-existing cold plasma (e.g. Sauvaud et al., 2001). Observations of PTE-signatures range from "active" (strong transverse flow, magnetic turbulence, electric current, local plasma acceleration) to "evanescent" (weak flow, weak current signature). PTEs appear to occur independently of Interplanetary Magnetic Field (IMF) Bz in the vicinity of the polar cusp region, which is consistent with observations of transient plasma injections observed with mid- and high-altitude satellites (e.g. Woch and Lundin, 1992; Stenuit et al., 2001). However the characteristics of PTEs in the magnetosphere boundary layer differ for southward and northward IMF. The Cluster data available up to now indicate that PTEs penetrate deeper into the magnetosphere for northward IMF than for southward IMF. This may or may not mark a difference in nature between PTEs observed for southward and northward IMF. Considering that flux transfer events (FTEs), (Russell and Elphic, 1979), are observed for southward IMF or when the IMF is oriented such that antiparallel merging may occur, it seems likely that PTEs observed for southward IMF are related to FTEs.Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere-ionosphere interactions; solar-wind magnetosphere interactions)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3