Diabatic processes modulating the vertical structure of the jet stream above the cold front of an extratropical cyclone: sensitivity to deep convection schemes

Author:

Wimmer MerylORCID,Rivière GwendalORCID,Arbogast Philippe,Piriou Jean-Marcel,Delanoë Julien,Labadie Carole,Cazenave Quitterie,Pelon Jacques

Abstract

Abstract. The effect of deep convection parameterisation on the jet stream above the cold front of an explosive extratropical cyclone is investigated in the global numerical weather prediction model ARPEGE, operational at Météo-France. Two hindcast simulations differing only in the deep convection scheme used are systematically compared with each other, with (re)analysis datasets and with NAWDEX airborne observations. The deep convection representation has an important effect on the vertical structure of the jet stream above the cold front at 1-d lead time. The simulation with the less active scheme shows a deeper jet stream, associated with a stronger potential vorticity (PV) gradient in the middle troposphere. This is due to a larger deepening of the dynamical tropopause on the cold air side of the jet and a higher PV destruction on the warm air side, near 600 hPa. To better understand the origin of this stronger PV gradient, Lagrangian backward trajectories are computed. On the cold air side of the jet, numerous trajectories undergo a rapid ascent from the boundary layer to the mid-levels in the simulation with the less active deep convection scheme, whereas they stay at mid-levels in the other simulation. This ascent explains the higher PV noted on that side of the jet in the simulation with the less active deep convection scheme. These ascending air masses form mid-level ice clouds that are not observed in the microphysical retrievals from airborne radar-lidar measurements. On the warm air side of the jet, in the warm conveyor belt ascending region, the Lagrangian trajectories with the less active deep convection scheme undergo a higher PV destruction due to a stronger heating occurring in the lower and middle troposphere. In contrast, in the simulation with the most active deep convection scheme, both the heating and PV destruction extend further up into the upper troposphere.

Funder

Agence Nationale de la Recherche

European Space Agency

Publisher

Copernicus GmbH

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3