Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr

Author:

Burschil T.,Scheer W.,Kirsch R.,Wiederhold H.

Abstract

Abstract. Within the scope of climatic change and associated sea level rise, coastal aquifers are endangered and are becoming more a focus of research to ensure the future water supply in coastal areas. For groundwater modelling a good understanding of the geological/hydrogeological situation and the aquifer behavior is necessary. In preparation of groundwater modelling and assessment of climate change impacts on coastal water resources, we setup a geological/hydrogeological model for the North Sea Island of Föhr. Data from different geophysical methods applied from the air, the surface and in boreholes contribute to the 3-D model, e.g. airborne electromagnetics (SkyTEM) for spatial mapping the resistivity of the entire island, seismic reflections for detailed cross-sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An iterative and integrated evaluation of the results from the different geophysical methods contributes to reliable data as input for the 3-D model covering the whole island and not just the well fields. The complex subsurface structure of the island is revealed. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations reordered the youngest Tertiary and Quaternary sediments by glaciotectonic thrust faulting, as well as incision and refill of glacial valleys. Both subsurface structures have a strong impact on the distribution of freshwater-bearing aquifers. A digital geological 3-D model reproduces the hydrogeological structure of the island as a base for a groundwater model. In the course of the data interpretation, we deliver a basis for rock identification. We demonstrate that geophysical investigation provide petrophysical parameters and improve the understanding of the subsurface and the groundwater system. The main benefit of our work is that the successful combination of electromagnetic, seismic and borehole data reveals the complex geology of a glacially-affected island. A sound understanding of the subsurface structure and the compilation of a 3-D model is imperative and the basis for a groundwater flow model to predict climate change effects on future water resources.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference52 articles.

1. Aber, J. S. and Ber, A.: Glaciotectonism, Developments in Quaternary Sciences, 6, Elsevier, Amsterdam, 2007.

2. Andersen, L. T.: The Fanø Bugt Glaciotectonic Thrust Fault Complex, Southeastern Danish North Sea – A study of large-scale glaciotectonics using high-resolution seismic data and numerical modeling, Ph.D. thesis, Danmarks og Grønlands Geologiske Undersøgeles Rapport 2004/30, 2004.

3. Archie, G. E.: The electrical resistivity log as an aid in determining some reservoir characteristics, T. Am. I. Min. Met. Pet. Eng., 146, 54–62, 1942.

4. Auken, E. and Christiansen, A. V.: Layered and laterally constrained 2D inversion of resistivity data, Geophysics, 69, 752–761, https://doi.org/10.1190/1.1759461, 2004.

5. Auken, E., Christiansen, A. V., Westergaard, J. H., Kirkegaard, C., Foged, N., and Viezzoli, A.: An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Explor. Geophys., 40, 184–192, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3