Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr
-
Published:2012-10-01
Issue:10
Volume:16
Page:3485-3498
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Burschil T.,Scheer W.,Kirsch R.,Wiederhold H.
Abstract
Abstract. Within the scope of climatic change and associated sea level rise, coastal aquifers are endangered and are becoming more a focus of research to ensure the future water supply in coastal areas. For groundwater modelling a good understanding of the geological/hydrogeological situation and the aquifer behavior is necessary. In preparation of groundwater modelling and assessment of climate change impacts on coastal water resources, we setup a geological/hydrogeological model for the North Sea Island of Föhr. Data from different geophysical methods applied from the air, the surface and in boreholes contribute to the 3-D model, e.g. airborne electromagnetics (SkyTEM) for spatial mapping the resistivity of the entire island, seismic reflections for detailed cross-sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An iterative and integrated evaluation of the results from the different geophysical methods contributes to reliable data as input for the 3-D model covering the whole island and not just the well fields. The complex subsurface structure of the island is revealed. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations reordered the youngest Tertiary and Quaternary sediments by glaciotectonic thrust faulting, as well as incision and refill of glacial valleys. Both subsurface structures have a strong impact on the distribution of freshwater-bearing aquifers. A digital geological 3-D model reproduces the hydrogeological structure of the island as a base for a groundwater model. In the course of the data interpretation, we deliver a basis for rock identification. We demonstrate that geophysical investigation provide petrophysical parameters and improve the understanding of the subsurface and the groundwater system. The main benefit of our work is that the successful combination of electromagnetic, seismic and borehole data reveals the complex geology of a glacially-affected island. A sound understanding of the subsurface structure and the compilation of a 3-D model is imperative and the basis for a groundwater flow model to predict climate change effects on future water resources.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference52 articles.
1. Aber, J. S. and Ber, A.: Glaciotectonism, Developments in Quaternary Sciences, 6, Elsevier, Amsterdam, 2007. 2. Andersen, L. T.: The Fanø Bugt Glaciotectonic Thrust Fault Complex, Southeastern Danish North Sea – A study of large-scale glaciotectonics using high-resolution seismic data and numerical modeling, Ph.D. thesis, Danmarks og Grønlands Geologiske Undersøgeles Rapport 2004/30, 2004. 3. Archie, G. E.: The electrical resistivity log as an aid in determining some reservoir characteristics, T. Am. I. Min. Met. Pet. Eng., 146, 54–62, 1942. 4. Auken, E. and Christiansen, A. V.: Layered and laterally constrained 2D inversion of resistivity data, Geophysics, 69, 752–761, https://doi.org/10.1190/1.1759461, 2004. 5. Auken, E., Christiansen, A. V., Westergaard, J. H., Kirkegaard, C., Foged, N., and Viezzoli, A.: An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Explor. Geophys., 40, 184–192, 2009.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|