Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments
Author:
Abe-Ouchi A.ORCID, Saito F.ORCID, Kageyama M., Braconnot P., Harrison S. P., Lambeck K., Otto-Bliesner B. L.ORCID, Peltier W. R.ORCID, Tarasov L., Peterschmitt J.-Y.ORCID, Takahashi K.
Abstract
Abstract. We describe the creation of boundary conditions related to the presence of ice sheets, including ice sheet extent and height, ice shelf extent, and the distribution and altitude of ice-free land, at the Last Glacial Maximum (LGM) for use in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice sheet extent, and thus the albedo mask, for the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Differences in the climate response to the individual LGM reconstructions, and between these reconstructions and the CMIP5/PMIP3 composite, are largely confined to the ice-covered regions, but also extend over North Atlantic Ocean and Northern Hemisphere continents through atmospheric stationary waves. There are much larger differences in the climate response to the latest reconstructions (or the derived composite) and ice-sheet reconstructions used in previous phases of PMIP.
Publisher
Copernicus GmbH
Reference93 articles.
1. Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, https://doi.org/10.5194/cp-3-423-2007, 2007. 2. Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374, 2013. 3. Alyea, F.: Numerical simulation of an ice age paleoclimate, Atmospheric Science Paper No. 193, Colorado State University, Fort Collins, Colorado, USA, 1972. 4. Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, Boulder, Colorado, USA, https://doi.org/10.7289/V5C8276M, 2009. 5. Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A. B.: The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review, Quaternary Sci. Rev., 21, 49–70, 2002.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|